Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Value Function Transfer for Deep Multi-Agent
Reinforcement Learning Based on N-Step Returns

Yong Liu'?, Yujing Hu?, Yang Gao'!, Yingfeng Chen’ and Changjie Fan?
!National Key Laboratory for Novel Software Technology, Nanjing University, China
2Fuxi Al Lab in Netease

lucasliunju @ gmail.com, gaoy @nju.edu.cn
{huyujing, chenyingfengl, fanchangjie } @corp.netease.com

Abstract

Many real-world problems, such as robot con-
trol and soccer game, are naturally modeled as
sparse-interaction multi-agent systems. Reutiliz-
ing single-agent knowledge in multi-agent systems
with sparse interactions can greatly accelerate the
multi-agent learning process. Previous works rely
on bisimulation metric to define Markov decision
process (MDP) similarity for controlling knowl-
edge transfer. However, bisimulation metric is
costly to compute and is not suitable for high-
dimensional state space problems. In this work,
we propose more scalable transfer learning meth-
ods based on a novel MDP similarity concept. We
start by defining the MDP similarity based on the
N-step return (NSR) values of an MDP. Then,
we propose two knowledge transfer methods based
on deep neural networks called direct value func-
tion transfer and NSR-based value function trans-
fer. We conduct experiments in image-based grid
world, multi-agent particle environment (MPE) and
Ms. Pac-Man game. The results indicate that
the proposed methods can significantly accelerate
multi-agent reinforcement learning and meanwhile
get better asymptotic performance.

1 Introduction

Multi-agent reinforcement learning (MARL) is an important
learning technique for solving sequential decision-making
problems with multiple agents. Recently, with the success
of deep reinforcement learning (DRL) [Mnih et al., 2015;
Mnih et al., 2016; Schulman et al., 2017], the combination of
deep learning models and multi-agent reinforcement learning
has also been widely studied.

Current deep multi-agent reinforcement learning algo-
rithms mainly focus on learning in the multi-agent systems
where agents are tightly coupled [Sukhbaatar et al., 2016;
Foerster et al., 2018; Sunehag et al., 2018; Rashid et al.,
2018]. However, many multi-agent systems in the real world
have sparse interactions between agents, which means that
the agents are independent and don’t have to consider the
other agents’ impact in most situations. Exploiting the sparse-
ness of the interactions between agents can significantly im-

457

prove the performance of multi-agent reinforcement learn-
ing (MARL). Earlier work focuses on constructing coordi-
nation graphs (CGs) to represent the interactive relationship
between agents and conducting learning according to the
specified relationship in each state [Guestrin et al., 2002a;
Guestrin et al., 2002b; Kok and Vlassis, 2004]. However,
CG-based approaches can only be used in cooperative tasks.
Instead of relying on coordination graphs, recent work fo-
cuses on automatically identifying interaction areas during
the learning process and can be applied to more general learn-
ing tasks [De Hauwere et al., 2010; Hauwere et al., 2011; Kok
et al., 2005; Melo and Veloso, 2009; Melo and Veloso, 2011;
Yu et al., 2015]. In some situations, agents may have already
learned some single-agent knowledge (e.g., local value func-
tion, local policy) in the same or similar scenarios and ap-
propriately utilizing such knowledge can help to learn better
policies faster in multi-agent systems. In this paper, we try to
transfer single-agent knowledge to multi-agent environment.

The key to efficiently reutilizing the learned knowledge
is Markov decision process (MDP) similarity, which defines
the difference between the environmental dynamics of differ-
ent MDPs and determines whether and how the knowledge
can be transferred. A commonly used technique for defin-
ing MDP similarity is bisimulation metric [Hu et al., 2015;
Song et al., 2016; Ferns er al., 2004], which exactly captures
the property of rewards and state transitions in an MDP. How-
ever, the fundamental drawback of bisimulation metric is the
corresponding high computational cost and inapplicable for
high- dimensional state space problem.

In this paper, we propose a novel concept of MDP sim-
ilarity for identifying the interaction areas of a multi-agent
system and propose scalable knowledge transfer methods for
deep multi-agent reinforcement learning. Firstly, instead of
relying on bisimulation metric, we propose to quantify the
environmental dynamics of an MDP by the N-step return
(NSR) values, based on which we define a novel concept of
MDP similarity. Secondly, based on the novel concept of
MDP similarity, we propose two novel knowledge transfer
methods called direct value function transfer and NSR-based
value function transfer. Thirdly, experiments are conducted
in grid-world, multi-agent particle environment (MPE) and
a well-known video game called Ms. Pac-Man. The results
show that our methods can significantly improve learning ef-
ficiency and meanwhile get better asymptotic performance.



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2 Background

In this section, we review key concepts in multi-agent rein-
forcement learning and briefly introduce related work.

2.1 MDP and Sparse Interactions

We start by reviewing the concept of Markov decision pro-
cess (MDP), which is the fundamental model of reinforce-
ment learning (RL).

Definition 1 A Markov Decision Process is a tuple
(S, A, R, T), where S is the state space, A is the action
space of the agent, R : S x A — R is the reward function,
T:5xAxS —|0,1] is the transition function.

One classic reinforcement learning algorithm for solving
an MDP is Q-learning [Watkins, 1989], which iteratively
approximates the optimal state-action value function of the
MDP with a tabular function @ by the following rule:

Qls, ) & (1= 0)Q(s,0) + alr + 7y max Q(s',a')], (1)

where « is the learning rate, (s, a) is the current state-action
pair, r is the immediate reward, and s’ is the next state.
Current deep multi-agent reinforcement learning algo-
rithms assume strong coupling between agents, which means
that each agent can exchange information (e.g., actions and
reward signals) with other agents at each time step. How-
ever, in many multi-agent systems, the interactions between
agents is sparse. Melo and Veloso present examples of the so-
called multi-agent systems with sparse interactions [Melo and
Veloso, 2009]. In Figure 1, the agents can walk freely in most
areas. However, for each of the narrow doorways, only one
robot can pass through it at one time, which means the agents
should coordinate around the doorway. In such systems, the
interactions between agents do not occur in all states.

2.2 MDP Similarity and Knowledge Transfer

In a multi-agent system with sparse interactions, sometimes
agents may have already learned some single-agent knowl-
edge (e.g., local value functions) in the same or similar sce-
narios before the multi-agent learning process. With such
knowledge, there is no need for agents to learn from scratch.
For example, Dota game ! has multi-battle modes. We can
learn a policy in 1v1 scenario and try to transfer the policy
to 5v5 scenario. The key to solving it is MDP similarity. On
one hand, related MDPs may have some common knowledge
that can help the target MDP to be solved better. On the other
hand, transferring knowledge from MDPs which differ too
much from the target MDP may cause negative transfer.

2.3 Related Work

For transfer in multi-agent systems with sparse interactions,
previous work mainly concentrated on the tabular domain.
Several works [De Hauwere et al., 2010; Hauwere et al.,
2011; Hu et al., 2015] investigate how to reutilize available
knowledge to improve learning algorithms. The key to the
knowledge transfer process is to evaluate the difference be-
tween the agents’ local environmental dynamics in the previ-
ous and current tasks. Knowledge can only be reused in states

"http://www.dota2.com/

458

Figure 1: Transfer single-agent knowledge to multi-agent system

where the difference is small. For example, De Hauwere et
al. propose to detect the difference in environmental dynam-
ics from statistics of immediate rewards [De Hauwere et al.,
2010] and extend the detecting method by using future re-
wards [Hauwere et al.,, 2011]. Hu ef al. formally defines
the difference as MDP similarity based on bisimulation met-
ric [Ferns et al., 2004] and propose two knowledge transfer
methods for game theory-based MARL algorithms.

Recent work about multi-agent reinforcement learning has
started moving from tabular-based method to deep learning-
based method. CommNet [Sukhbaatar et al., 2016] uses
a centralized network to achieve communication between
agents. BiCNet [Peng et al., 2017] uses bidirectional RNNs
to communicate with others. These methods need an individ-
ual reward for each agent. VDN [Sunehag et al., 2018] learns
a joint action-value function with a shared reward which is
decomposed into a sum of individual agent terms. QMIX
[Rashid et al., 2018] tries to use a hypernetwork to predict
the weights of each agent individual state-action value in the
joint action-value function. In this paper, we propose novel
transfer algorithms based on VDN and QMIX.

3 Our Method

In this section, we propose new transfer approaches which
reutilize single-agent knowledge in multi-agent systems with
sparse interactions.

3.1 Direct Value Function Transfer

The simplest way of transferring source task knowledge is
to directly transfer all state-action values or policy to multi-
agent environment. [Hu ef al., 2015] proposed value function
transfer (VFT), which uses each agent’s local value function
to initialize joint state-action value functions in multi-agent
environment. However, the method is only suitable for tabu-
lar environments and cannot be extended directly with deep
neural networks. This is because the values of all state-action
pairs are encoded in the neural network parameters, which
means that they are not independent of each other and can-
not be accessed as easily as in the tabular case. In addition,
we can’t directly initialize the multi-agent network by the op-



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4

=
Loss}

Replay
Buffer

Figure 2: Direct Value Function Transfer Network Architecture.
Model A represents single-agent expert policy network and model
B represents multi-agent network.

timized single-agent networks since their network structures
are different. Inspired by policy distillation, we firstly pro-
pose a transfer method called direct value function transfer
(DVFT), which trains a pre-trained multi-agent network to fit
the single-agent knowledge.

Suppose we have n expert policies (one for each agent)
which are trained in single-agent source tasks. Under this
setting, the multi-agent model can be pre-trained with the
single-agent expert policies in the multi-agent environment.
As shown in Figure 2, for any global state s, the local state s;
contained in s is input to the network of each agent i. By in-
teracting with the environment, we can obtain the experience
(8iya4,74, 8%, done) in source tasks. By forward calculation,
qi(si, a;) can be obtained from the existing expert network.
Then we can mix them to store in the memory buffer. In this
way, the multi-agent network can train joint Q(s,d) value
by sampling data from the memory buffer. Since the basic
method is VDN and QMIX, we will obtain individual value
function Q;(s;, a;) for each agent ¢ in these methods which
represents the joint policy for agent ¢ in multi-agent environ-
ment. By utilizing individual value function Q;(s;,a;), we
design a novel loss function (line 16 in Algorithm 1), which
contains two components: policy loss which aims to output a
similar policy to the single-agent expert policy and TD-error
loss which aims to train the joint action-value function.

3.2 NSR-based Value Function Transfer

Direct value function transfer provides an appropriate way of
network initialization for multi-agent reinforcement learning.
However, the method has many limitations. First, it trans-
fers all state-action values, which may cause negative trans-
fer. Second, it needs to learn in the entire state space, which
may cause performance degradation since the output of multi-
agent model may change in the states where a single-agent
source policy performs well. In this section, we propose
a novel value function transfer algorithm based on a novel
MDP similarity concept. By dividing the state space, the
agents just need to learn in the interaction areas and can di-
rectly use the single-agent source policy in most time. Three
main ideas underly our method: 1) using N-step return to
measure MDP similarity, 2) dividing the state space and nar-
rowing down the state space which the agents need to learn,
3) selective transfer and avoiding negative transfer.

First, we should find appropriate representation which
summarizes the local environmental dynamics related to each
state in an MDP. Note that in previous work, bisimulation
metric defines the distance between any two probability dis-

459

Algorithm 1: Direct Value Function Transfer

Input: local value function g; (si, a) for each agent 7, discount
factor ~y, exploration factor e

Initialization. Q(s,@) < 0, Q(s,a@) « 0, Qi(si, @) + 0i;

1
2 foreach episode do

3 Initialize state s;

4 repeat

5 foreach agent ¢ do

6 (si, a;) < the component of agent i in (s, @);
7 L a; < max ¢; index with e-greedy policy;

8 @< [a1,...,anl;

9 store experience (s, d,r, s, done, [q1, ..., qn]);

10 54+ §';

Sample training experience from buffer;

if not done then
‘ y=r+ ’YQmaac(sa (_i; 0 );

else
Ly=n

L(0) = a 27 (qi(si, @) — Qilsi, ai; 6:)) + (1 —
a)(y — Q(s, @ 0))*

Update 6 by a gradient method w.r.t. L(6);

Every C steps reset Q=Q:

B until s = terminal,

12
13
14
15

tributions. However, this causes high computational cost and
cannot be directly used in complicated environments (e.g.,
image-based video game). We propose a novel concept for
modeling local environmental dynamics which is computa-
tionally efficient and can be easily combined with deep neu-
ral networks for solving large-scale problems. Our idea is
to model the local environmental dynamics of any state s;
using some variables only related to that state. A straightfor-
ward solution is the immediate rewards in each state, which is
adopted in CQ-learning algorithm [De Hauwere et al., 2010].
However, the immediate rewards do not contain sufficient in-
formation since the delayed future rewards and state tran-
sitions are also an important part of the environmental dy-
namics. Thus, one may directly consider using the long-time
accumulative rewards to represent the environmental dynam-
ics. But here comes a paradox. The long-time accumulative
rewards are the value functions of the agents. If the value
functions of two MDPs are learned, there seems no need to
compute the MDP similarity for knowledge transfer. In fact,
both the immediate rewards and the long-time accumulative
rewards are special cases of [V-step return with the step num-
ber N =1and N = oo.

Definition 2 (N-Step Return) Let M; = (S;, A;, R}, T}) be
an MDP of agent i and T; be learned policy of agent i in M,;.
Suppose the state visited at time step t (t > 0) is s;. For a
given step number N (N > 1), the N-step return of s; at

(fo:’ol Vorepr|s =

Si, 7Ti), where 1y, is the reward at time step (t + k).

time t under policy m; is RY ,(s;)

It is natural to consider the [V-step returns with a step num-
ber N larger than 1. Due to the discount rate ~, the rewards
sampled at larger time steps must contribute less to the V-
step return value fo +(si) than the rewards sampled at time



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

NSR
Model

Environment

Replay
Buffer

Figure 3: NSR-based Value Function Transfer Network Architec-
ture. Model A represents single-agent expert policy network and
model B represents the multi-agent network.

steps closer to t. Therefore, if an appropriate step number N
is chosen, the corresponding N-step returns may contain the
most information about the local environmental dynamics.

Let M = (N, S, {A4;}" 1,{R;},,T) be a Markov game.
Assume that the state space S can be factored as S =
x7_1S;, where S, stands for agent 4’s local state space. Pre-
vious single-agent task can be modeled by an MDP M, =
(S;, A;, RLTY). A naive way of defining MDP similarity us-
ing N-step return (NSR) would be to learn the NSR model
separately in source single-agent environment M; and a vir-
tual target M; 2. And then comparing the state-wise differ-
ence between these models:

DMq‘,,Mi (Sl) = |R71X,t(sl) - ﬁg,t(si)‘a 2)

where ﬁgt(sl) is the NSR model in multi-agent environ-
ment. However, such an approach needs to learn an NSR
model in each source single-agent environment, which is not
reasonable and increases the burden of the source task. If we
can directly use the results learnt by each individual agent,
the problem will be solved. We notice that the single-agent
source policy model can output its ¢;(s;, a;) value (e.g., DQN
model). We can use it to approximate the local environment
dynamics. On the one hand, the value is easy to obtain, on the
other hand, it is not necessary to learn the NSR model in the
source task. For the environment in Figure 4, the two agents
need to reach its own goal. However, only one agent can pass
the doorway at each step. If both the agents reach the door-
way at the same time, collision will occur and receiving a very
negative reward will be given to each of them. That will cause
a large difference between the target-task NSR value and the
single-agent source-task Q-value, since there is no collision
in a single-agent environment. Therefore, we define the V-
step return-based MDP similarity as the difference between
the single-agent state-action value and multi-agent environ-
ment NSR value under single-agent policy ;.

Definition 3 (/V-Step Return-Based MDP Similarity) Ler
M; = <S“AZ,R£,TZ> and Mz = <SZ,A“RZ,T1> be two
MDPs of agent i in single-agent environment and multi-agent
environment, respectively. Let w; be an policy of agent i in
single-agent M;. Given a step number N (N > 1), denote

the expectation of the N -step returns of any state s; in M; by

The local environment perceived by agent i in M is also mod-
eled by a virtual MDP M; = (S;, A;, R}, T})

460

RN (s;) and the state-action value function under w; in M;
by qi(8i, ;). The similarity between M; and M; in state s;
is Dy xp. (51) = RN (si) = qi(si, mi).

Based on the novel MDP similarity, we propose our value
function transfer method, which is shown in Algorithm 2 and
Figure 3. Our method first learn an NSR model in the multi-
agent environment with a single-agent expert policy. Accord-
ing to the NSR model, we can divide state space into two
parts: the states where single-agent knowledge can be trans-
ferred and the states where multi-agent learning should be
conducted. Specifically, given any local state s; of agent 7
and a similarity threshold value 7, the local environmental
dynamics of s; in the single-agent source task is regarded as
similar to those in the multi-agent environmental if the cor-
responding NSR-based MDP similarity D),y (s;) < 7. In
this case, the single-agent policy 7; learnt in the source task
can be directly executed in the multi-agent environment. And
when D, (s;) > 7, which means that the local environ-
mental dynamics related to s; in the single-agent source task
and the multi-agent target tasks are very different, multi-agent
learning will be conducted. In this way, the state space which
the agents need to learn is greatly reduced. The multi-agent
learning algorithm just needs to learn in a few states and the
model can converge faster.

Algorithm 2: NSR-based Value Function Transfer
Input: local value function ¢;(s;, a) and single-agent policy 7;
for each agent ¢, N (N > 1), discount factor ~,
exploration factor €, §
Initialization. NSR value function 7%7];’1 < 1, Replay Buffer
B, for each agent 7 ;

1

2 foreach episode do

3 Initialize state s¢, t = 0;

4 repeat

5 foreach agent i do

6 (84,¢, a;) < the state of agent ¢ in (s¢, @);
7 a; < max ¢; index with probability J;

8 Yi = Te-N41 + YN + oo+ YN g
9

Store (si,t—nN+1,¥:) in B
Update v; by a gradient method w.r.t.

(i = Ry (si0-n1150))%
t=t+1
B until s; = terminal,

foreach episode do

Initialize state s;

repeat

(si,a;) < the state of agent ¢ in (s, @);

R, (8i) — qi(si,m(si))‘ < 7 then
a; < argmax ¢;(s;, a;) for each agent i;

if max;

18 |
else

L

Learning by multi-agent method;
until s = terminal;

a; < argmax Q; (s, a;) with € greedy for each
agent ¢;

According to the NSR model, we can measure MDP simi-



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

(a) map 1 (b) map 2
Figure 4: Grid World environment with two robots. The left is robot
1 and the right is robot 2 in each map.

larity between the single-agent and multi-agent environment.
In this way, we can identify interaction areas and obtain
whether the single-agent policy is appropriate for the current
joint state. Hence, we can achieve selective transfer and better
avoid negative transfer.

4 [Experiments

In this section, we evaluate the performance of our knowl-
edge transfer algorithms in several test scenarios of different
complexity. The first one is conducted in benchmarks (grid
world games based on image input). The second is multi-
agent particle environment (MPE) [Lowe et al., 2017]. The
last is conducted in a game called Ms. Pac-Man 3.

4.1 Grid World

In the first scenario, two robots must move into a room envi-
ronment and receive a shared reward. As depicted in Figure
4, we consider two maps with different size. Each agent starts
in a corner and the goal is the opposite corner, receiving a re-
ward of 10 for succeed. If both agents end up in the shaded
state (the doorway), we think collision occurs and the agents
both receive a penalty of -10. Each agent can choose between
5 possible actions (North, South, East, West, Stop).

We adapt VDN and QMIX as the basic learning algorithms
and implement the proposed two knowledge transfer methods
on each of them. The single-agent expert policy is trained by
DQN. Figure 7(a-d) exhibits the average reward per episode
performance of all tested algorithms in the image-based grid
world (The cost of training NSR model and DVFT model is
considered in all experiments). It can be found that the two
transfer methods perform better than the method which learns
from scratch and meanwhile converges faster. In addition, we
try to analysis the distribution of distance D, y; (s;)ineach
state for robot 1 and we find that the large difference value
concentrated on the states near to the doorway. That verifies
the effectiveness of NSR-based MDP similarity. As shown
in Figure 5(a), the four states which near to the doorway are
significantly highlighted and we just need to learn in these
states for robot 1. The two agents are heterogeneous and they
do not use shared networks. In Figure 5(b), we show the final
optimal policy for NSR-VFT. The solid line is represented to
transfer policy and the dashed line indicates policy learned
by the multi-agent model. We can find the number of states

3http://ai.berkeley.edu/

461

. N (ICH L om
. F—+——-- F—+————
| I
- _fl__:_______l__lj_
~ SR«
N o \F-T—— - T T~
. H :& Vo
. 2 -t ———— R
. Gzl«l* »:»{Gl

(a) Heatmap (b) Policy Display
Figure 5: (a) The heatmap shows the distribution of D(s;) for robot
1 in map 1. (b) The final learned policy in map 1. The red line is the
policy of robot 1 and the green line is the policy of robot 2.

which should learn by multi-agent model is just 2 for robot 1.
So, the difficulty of learning is greatly reduced.

4.2 Multi-Agent Particle Environment

The second scenario in this paper is Multi-Agent Particle En-
vironment. As shown in Figure 6, we choose predator—prey
as the test environment, where the adversary agent (red) is
slower and needs to capture the good agent (green), the good
agent is faster and need to escape. In this paper, we fix the
policy (trained by DQN) of a good agent and capturing the
good agent is a multi-agent learning task for adversary agents.
At each time step, adversary agents receive a reward of -1 ex-
cept capturing good agent which receives a reward of +10.

Figure 7(e-f) exhibits the average reward per episode of
all tested algorithms in MPE. It can be found that the two
knowledge transfer algorithms significantly improve the per-
formance of all the tested MARL algorithms. For example
in 7(e), the average reward of the basic learning algorithm
VDN is below -12. However, with the knowledge transfer
algorithms, all of them can finally achieve average rewards
around -7 to -12 and the performance of NSR-VDN is better
than VFT. That verifies the effectiveness of the NSR transfer
mechanism. From the perspective of convergence step perfor-
mance, the two knowledge transfer methods are significantly
faster than the basic algorithms. For example, in Figure 7(f),
the basic method QMIX is up to 270000 and is 3 times more
than NSR-QMIX method.

In order to analyze the influence of the value of 7 on
the learning results, the experiments on a different value of
threshold 7 are performed with the algorithm unchanged in
Figure 7(g-h). The 7 value of 2, 3, 5, and 7 are used for com-
parative experiments, respectively. For value of 2, 3, 5, as

O d

(a) predator-prey (b) Policy Display

Figure 6: Multi-agent Particle Environment



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

0 [
—100

0

J

© —-100 ° ° © -100
© © © ©
g 3 g 5
« -200 —— VON « -200 — QMIX @ -200 @ -200 — QmMIx
VFT-VDN VFT-QMIX VFT-QMIX
—— NSR-VDN —— NSR-QMIX —— NSR-QMIX
-300 -300 -300 —300
0 25 50 75 100 0 25 50 75 100 0 50 100 150 200 0 50 100 150 200
Step (thousands) Step (thousands) Step (thousands) Step (thousands)
(a) mapl-VDN (b) map1-QMIX {¢) map2-VDN {d) map2-QMIX
0 N/r 0 f 0 0
R e e gt //__4,__,,~\_ /,,/*/"""
T -50 T -50 B T fm
g g g -5 2 § 7 — =2
2100 —— VDN & _100 — QMIX K =3 ¢ t=3
VFT-VDN VFT-QMIX — 1=5 — 1=
—— NSR-VDN —— NSR-QMIX —100 =7 -100 =7
-150 150
0 200 400 0 200 400 0 25 50 75 100 0 25 50 75 100
Step (thousands) Step (thousands) Step (thousands) Step (thousands)
(¢) MPE-VDN (f) MPE-QMIX {g) ()

Figure 7: (a-f) is experiment results in Grid World (map1, map2) and MPE, (g) is the influence of 7 under VDN in MPE, (h) is the influence
of 7 under QMIX in MPE. Shaded regions are one standard deviation over 10 runs.

7 value increases, the jump start and final performance grad-
vally increase. That’s because more single-agent policy is
transferred. However, when the value increases to a certain
extent (e.g.,7 = 7), the jump start and final performance is
dropped and even cannot learn well. That means the nega-
tive transfer occurs. In addition, Figure 6(b) plots the trajec-
tory of the final learned policy, where the solid line represents
the policy transferred from single-agent policy and the dotted
line represents the learned policy with multi-agent model. We
can find that the agents select transfer single-agent policy at
the beginning stage because the distance of location between
the good agent and adversary agents is far and the adversary
agents just need to be close to the good agent. When the dis-
tance is close enough, the adversary agents select multi-agent
model for learning.

4.3 Ms. Pac-Man

The last experiment scenario in this paper is conducted in a
famous video game called Ms. Pac-Man. As shown in Figure
8, Ms. Pac-Man is a maze game where the goal of the game
player is to let the PacMan Scores as many points as possible
by eating pills and avoiding the pursuit of the ghosts. For
the ghosts in the game, capturing the PacMan is a multi-agent
learning task. We choose a pre-trained pacman controller by
Deep Q-Network (DQN) to play games.

Figure 8 plots the average reward of all tested algorithms
in Ms. Pac-Man. we can find the two knowledge transfer
approaches significantly improve the final performance and
meanwhile learn faster especially for the NSR-VDN method.
For example, the average reward per episode achieved by all
the basic learning algorithms is below -50 during the learning
process. However, with the knowledge transfer mechanism,
all of them can finally achieve reward per episode around -20
to -35 and the performance of NSR-VDN is better. As for
the perspective of convergence step performance, the conver-
gence steps of NSR-VDN is about 25000. The convergence
step of DVFT is 50000 and is at least 2 times more. In con-

462

—— VDN
VFT
—— NSR-VDN

0 100 200

Step (thousands)

300

Figure 8: Ms. Pac-Man Environment (left), the experiment result in
Ms. Pac-Man (right).

trast, the convergence step of VDN is up to 130000 and is at
least 5 times more.

5 Conclusions

In this paper, we focus on the problem of transferring knowl-
edge in multi-agent systems with sparse interactions. We try
to identify the interaction areas by defining a novel concept
of MDP similarity in deep multi-agent reinforcement learning
domain and propose more scalable knowledge transfer meth-
ods. Our major contributions include the novel concept of the
N-step return-based MDP similarity, and the two knowledge
transfer methods DVFT, NSR-VFT. Experimental results in
grid-world, multi-agent particle environment (MPE) and Ms.
Pac-Man show that with the N-step return-based MDP sim-
ilarity, the DVFT, and NSR-VFT methods drastically reduce
the learning time and meanwhile get better performance.

Acknowledgments

The authors would like to acknowledge support for this
project from the National Key R&D Program of China
(2017YFB0702600, 2017YFB0702601), the National Natu-
ral Science Foundation of China (Nos. 6143200).



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[De Hauwere et al., 2010] Yann-Michaél De Hauwere, Peter
Vrancx, and Ann Nowé. Learning multi-agent state space
representations. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Sys-
tems, pages 715-722, 2010.

[Ferns et al., 2004] Norm Ferns, Prakash Panangaden, and
Doina Precup. Metrics for finite Markov decision pro-
cesses. In Proceedings of the 20th Conference in Uncer-
tainty in Artificial Intelligence, pages 162—-169, 2004.

[Foerster et al., 2018] Jakob N Foerster, Gregory Farquhar,
Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[Guestrin et al., 2002a] Carlos Guestrin, Michail G.
Lagoudakis, and Ronald Parr. Coordinated reinforce-
ment learning. In Proceedings of the 9th International
Conference on Machine Learning, pages 227-234, 2002.

[Guestrin et al., 2002b] Carlos Guestrin, Shobha Venkatara-
man, and Daphne Koller. Context-specific multiagent co-
ordination and planning with factored MDPs. In Proceed-
ings of the 18th National Conference on Artificial Intelli-
gence, pages 253-259, 2002.

[Hauwere et al., 20111 Yann-Michaél De Hauwere, Peter
Vrancx, and Ann Nowé. Solving sparse delayed coordi-
nation problems in multi-agent reinforcement learning. In
International Workshop on Adaptive and Learning Agents
(ALA 2011), pages 114-133, 2011.

[Hu et al., 2015] Yujing Hu, Yang Gao, and Bo An. Learning
in multi-agent systems with sparse interactions by knowl-
edge transfer and game abstraction. In Proceedings of the
2015 International Conference on Autonomous Agents and
Multiagent Systems, pages 753-761, 2015.

[Kok and Vlassis, 2004] Jelle R. Kok and Nikos A. Vlas-
sis. Sparse cooperative Q-learning. In Proceedings of
the 21st International Conference on Machine Learning
(ICML 2004), pages 61-68, 2004.

[Kok et al., 2005] Jelle R. Kok, Pieter Jan’t Hoen, Bram
Bakker, and Nikos A. Vlassis. Utile coordination: Learn-
ing interdependencies among cooperative agents. In Pro-
ceedings of the 2005 IEEE Symposium on Computational
Intelligence and Games (CIGO05), pages 29-36, 2005.

[Lowe et al., 2017] Ryan Lowe, Yi Wu, Aviv Tamar, Jean
Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environ-
ments. Neural Information Processing Systems (NIPS),
2017.

[Melo and Veloso, 2009] Francisco S Melo and Manuela
Veloso. Learning of coordination: Exploiting sparse in-
teractions in multiagent systems. In Proceedings of the
8th International Conference on Autonomous Agents and
Multiagent Systems, pages 773-780, 2009.

463

[Melo and Veloso, 2011] Francisco S. Melo and Manuela M.
Veloso. Decentralized MDPs with sparse interactions. Ar-
tifitial Intelligence, 175(11):1757-1789, 2011.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih ez al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928—

1937, 2016.

[Peng et al., 2017] Peng Peng, Quan Yuan, Ying Wen,
Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun
Wang. Multiagent bidirectionally-coordinated nets for
learning to play starcraft combat games. arXiv preprint
arXiv:1703.10069, 2017.

[Rashid et al., 2018] Tabish Rashid, Mikayel Samvelyan,
Christian Schroder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic
value function factorisation for deep multi-agent rein-
forcement learning. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018,
pages 4292-4301, 2018.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[Song et al., 2016] Jinhua Song, Yang Gao, Hao Wang, and
Bo An. Measuring the distance between finite Markov
decision processes. In Proceedings of the 2016 Interna-

tional Conference on Autonomous Agents and Multiagent
Systems, pages 468-476, 2016.

[Sukhbaatar ef al., 2016] Sainbayar Sukhbaatar, Rob Fergus,
et al. Learning multiagent communication with backprop-
agation. In Advances in Neural Information Processing
Systems, pages 2244-2252, 2016.

[Sunehag ef al., 2018] Peter Sunehag, Guy Lever, Audrunas
Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z
Leibo, Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning based on team reward.
In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 2085—
2087. International Foundation for Autonomous Agents
and Multiagent Systems, 2018.

[Watkins, 1989] C.J.C.H. Watkins. Learning from delayed
rewards. PhD thesis, King’s College, Cambridge, 1989.
[Yu ez al., 2015] C Yu, M Zhang, F Ren, and G Tan. Mul-

tiagent learning of coordination in loosely coupled mul-

tiagent systems. [EEE Transactions on Cybernetics,
45(12):2853-2867, 2015.



