
From Few to More: Large-scale Dynamic Multiagent Curriculum Learning

Weixun Wang1 *, Tianpei Yang1 *, Yong Liu2 *, Jianye Hao1 B, Xiaotian Hao1, Yujing Hu3,
Yingfeng Chen3, Changjie Fan3, Yang Gao2,

1Tianjin University, {wxwang, tpyang, jianye.hao, xiaotianhao}@tju.edu.cn
2Nanjing University, lucasliunju@gmail.com, gaoy@nju.edu.cn

3NetEase Fuxi AI Lab, {huyujing, chenyingfeng1, fanchangjie}@corp.netease.com

Abstract

A lot of efforts have been devoted to investigating how agents
can learn effectively and achieve coordination in multiagent
systems. However, it is still challenging in large-scale multia-
gent settings due to the complex dynamics between the envi-
ronment and agents and the explosion of state-action space. In
this paper, we design a novel Dynamic Multiagent Curriculum
Learning (DyMA-CL) to solve large-scale problems by start-
ing from learning on a multiagent scenario with a small size
and progressively increasing the number of agents. We pro-
pose three transfer mechanisms across curricula to accelerate
the learning process. Moreover, due to the fact that the state
dimension varies across curricula„ and existing network struc-
tures cannot be applied in such a transfer setting since their
network input sizes are fixed. Therefore, we design a novel
network structure called Dynamic Agent-number Network
(DyAN) to handle the dynamic size of the network input. Ex-
perimental results show that DyMA-CL using DyAN greatly
improves the performance of large-scale multiagent learning
compared with state-of-the-art deep reinforcement learning
approaches. We also investigate the influence of three transfer
mechanisms across curricula through extensive simulations.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) has
achieved great success in achieving human-level control in
complex tasks (Mnih et al. 2015). However, there also exist
a lot of challenges in multiagent systems (MASs) where a
group of autonomous agents in a shared environment from
which they learn what to do according to the reward sig-
nals received while interacting with each other. (Claus and
Boutilier 1998; Busoniu, Babuska, and Schutter 2008). Fur-
thermore, in large-scale multiagent systems, the dynamics
and stochasticity of the environment become more com-
plex, which makes it more challenging to achieve coordi-
nation among agents (Singh, Jain, and Sukhbaatar 2019;
Yang et al. 2018a; Jiang and Lu 2018).

One efficient way to address large-scale multiagent learn-
ing problems is to leverage the concept of Curriculum Learn-
ing (CL), which has been an active field of research in the

* Equal contribution. BCorresponding author. We provide
a video introducing our DyMA-CL and experimental demonstra-
tions in https://github.com/wwxFromTju/wwxFromTju.github.io/
blob/master/video/DyMA.mp4?raw=true.

Environment: 5 Immortals Environment: 10 Immortals Environment: 15 Immortals

X 5

𝑶𝒃𝒔 𝒐 𝝉𝟏
𝒊 𝑹𝒆𝒘𝒂𝒓𝒅 𝒓𝝉𝒊

𝒊 𝑨𝒄𝒕𝒊𝒐𝒏 𝒂𝝉𝟏
𝒊

𝑨𝒈𝒆𝒏𝒕 𝒊

…… ……

……

X 5

X 5

Curriculum Knowledge Curriculum Knowledge

X 10

𝑶𝒃𝒔 𝒐 𝝉𝟐
𝒊 𝑹𝒆𝒘𝒂𝒓𝒅 𝒓𝝉𝟐

𝒊 𝑨𝒄𝒕𝒊𝒐𝒏 𝒂𝝉𝟐
𝒊

…… ……

……

X 10

X 10

X 15

𝑶𝒃𝒔 𝒐 𝝉𝟑
𝒊 𝑹𝒆𝒘𝒂𝒓𝒅 𝒓𝝉𝟑

𝒊 𝑨𝒄𝒕𝒊𝒐𝒏 𝒂𝝉𝟑
𝒊

…… ……

……

X 15

X 15

𝑨𝒈𝒆𝒏𝒕 𝒊 𝑨𝒈𝒆𝒏𝒕 𝒊

Figure 1: An example of DyMA-CL in StarCraft II.

past few years, especially regarding its application to RL.
The Curriculum Learning, consists of defining a set of source
tasks and training the agent on each of them individually
before progressing to learning on the full task.

One major direction of applying CL to RL focuses on how
to deal with increasingly complicated tasks. Andreas et al.
(2017) used curriculum learning to make their model scale up
smoothly from simple tasks to difficult ones, the difficulty of
each task is associated with sketches of different length. Later,
Wu and Tian (2017) integrated RL with CL for the complex
video game Doom, and developed an adaptive curriculum
training that samples from a varying distribution of tasks to
train the model, which achieves higher scores than learning
the target task directly. However, these methods simply man-
ually design the curricula which requires piror knowledge.
Another direction of CL is to automatically design the cur-
riculum. Narvekar et al. (2017a) proposed formulating the
selection of tasks using a Curriculum Markov Decision Pro-
cess (CMDP). However, whether the curriculum policy could
actually be learned is not demonstrated. Later, they (2019)
addressed this problem by exploring various representations
to learn the curriculum policy.

However, all the above approaches focus on designing the
curricula manually or automatically in single-agent learning
tasks. Although some existing works consider CL in multia-
gent settings, the way they utilize CL is quite simple, which
is not the focus of these works (Agarwal, Kumar, and Sycara
2019). To address the growing challenges as the increase of
agent-number in large-scale MASs, in this paper, we firstly
propose a novel multiagent CL, named Dynamic Multia-
gent Curriculum Learning (DyMA-CL) as shown in Figure

ar
X

iv
:1

90
9.

02
79

0v
1

 [
cs

.A
I]

 6
 S

ep
 2

01
9

https://github.com/wwxFromTju/wwxFromTju.github.io/blob/master/video/DyMA.mp4?raw=true.
https://github.com/wwxFromTju/wwxFromTju.github.io/blob/master/video/DyMA.mp4?raw=true.

1. DyMA-CL solves large-scale problems by starting from
learning on a small-size multiagent scenario and progres-
sively increasing the number of agents to learn the target task
finally. Three kinds of transfer mechanisms (Buffer Reuse,
Curriculum Distillation, and Model Reload) are proposed
across different tasks to accelerate the curriculum learning
process. The first two mechanisms do not require a specific
network structure, while the last one does since existing
network architectures cannot be directly used in such a multi-
agent CL setting due to the fixed size of network input and
the state dimension in our settings varies across curricula.
Thus, we design a novel network structure called Dynamic
Agent-number Network (DyAN) by combining graph neural
network to handle the dynamic size of the network input.
Experimental results in Starcraft-II (Samvelyan et al. 2019)
and MAgent (Zheng et al. 2018) show that DyMA-CL greatly
improves the performance on large-scale problems compared
with state-of-the-art DRL approaches; and three kinds of
transfer mechanisms across curricula greatly boost the per-
formance of DyMA-CL.

Background

Partially Observable Stochastic Games

A natural multiagent extension of Markov decision processes
(MDPs) are Stochastic Games (SGs) (Littman 1994), which
model the dynamic interactions among multiple agents. In
this paper, we follow previous work’s settings and model
the multiagent learning problems as Partially Observable
Stochastic Games (POSGs) (Hansen, Bernstein, and Zilber-
stein 2004) considering that agents may not have access to
the complete environmental information.

A Partially Observable Stochastic Game (POSG) is defined
as a tuple 〈N ,S,A1, · · · ,An, T,R1, · · · ,Rn,O1, · · · ,On〉,
whereN is the set of n agents; S is the state set;Ai is the set
of actions available to agent i (A = A1×A2×· · ·×An is the
joint action space); T is the transition function that defines
transition probabilities between states: S ×A× S → [0, 1];
Ri is the reward function for agent i: S ×A → R and Oi is
the observation set of agent i.

Note that each state s ∈ S contains the possible con-
figurations of the environment and all agents, while each
agent i draws a private observation oi correlated with the
state: S 7→ Oi, e.g., an agent’s observation includes the
agent’s private information and the relative distance be-
tween itself and other agents. Formally, an observation
of agent i at step t can be constructed as follows: oit =

{oi,envt ,mi
t, o

i,1
t , · · · , oi,i−1t , oi,i+1

t , · · · , oi,nt }, where oi,envt

describes the surrounding environmental information, mi
t is

agent i’s private property (e.g., in robotics, mi
t includes agent

i’s location, the battery power and the healthy status of each
component) and the rest are the observations of agent i on
other agents (e.g., in robotics, oi,i−1t includes the agent i’s
observation about the relative location, the exterior of agent
i−1). A policy πi:Oi×Ai → [0; 1] specifies the probability
distribution over the action space of agent i. The goal of agent
i is to learn the optimal policy π∗i that maximizes the expected
return with a discount factor γ: J = Eπ∗i

[∑∞
t=0 γ

trit
]
.

Curriculum Learning
Curriculum Learning (CL) is firstly introduced in (Bengio et
al. 2009) which is defined as a Machine Learning notion to
improve the performance of Supervised Learning. The idea
of CL is inspired by observing the way humans learn that
starts with simple, small problems and gradually progresses
to more complex, difficult tasks. In Curriculum Learning, the
goal is to generate a series of training tasks, beginning from
the simplest one and then gradually increasing the difficulty
of training to improve the final asymptotic performance or
decrease the training time.

Narvekar et al. (2016) firstly applied CL to RL and pro-
posed a new CL framework. They generated a sequence of
RL source tasks, named "Curriculum", trained the agent on
each of the source tasks and then on the target task. Different
from CL in Supervised Learning, each task in the RL curricu-
lum is defined as an Markov Decision Process (MDP). The
difficulty of each task is controlled by eliminating certain
actions or states, modifying the transition or reward function,
or changing the starting or terminal distributions of MDPs.
The sequence of source tasks can be manually designed or
automated generated (Narvekar, Sinapov, and Stone 2017a;
Narvekar, Sinapov, and Stone 2017b). In this paper, we focus
on CL in multiagent RL settings and design a dynamic mul-
tiagent curriculum learning to solve large-scale multiagent
learning problems.

Dynamic Multiagent Curriculum Learning
Large-scale Multiagent Systems
Multiagent learning receives much attention and how to
achieve multiagent coordination is the key problem. Recent
researches have found that the difficulty of multiagent learn-
ing is exponentially increasing as the number of agents in-
creases (Samvelyan et al. 2019). Moreover, in large-scale
multiagent systems, the dynamics and stochasticity of the
environment become more complex, which makes it more
challenging to achieve coordination among agents (Chen et
al. 2018). We first propose several multiagent properties in na-
ture which are commonly existing in MASs, and then utilize
these properties to address large-scale multiagent learning
problems.

Property 1 Partial Observability: In MASs, agents make
decisions based on their local observations, in which way
large-scale problems can be reduced to relatively indepen-
dent but correlated small-size ones.

The common settings are to model multiagent learning
problems as partially observable stochastic games (POSGs).
In such partially observable environments, each agent selects
an action based on its local (partial) observation, and the
number of agents in each agent’s vision is changing all the
time as agents move and execute actions. For example, when
the agent drives a car on the road, the number of cars in his
local vision changes (Singh, Jain, and Sukhbaatar 2019). The
number of cars in the driver’s vision decreased when the road
is crowded at first and then some cars go out of his vision,
learning in this situation is similar to learning in a scenario
with a small number of cars. Therefore, large-scale learning
problems can be naturally transformed into small ones based
on Partial Observability.

Environment

𝝉𝒌

𝐴𝑔𝑒𝑛𝑡 𝑖

𝑨𝒄𝒕𝒊𝒐𝒏 𝒂𝝉𝟏
𝒊

Policy Network 𝝅𝝉𝒌
Or
Q Network 𝒒𝝉𝒌

Critic Network

Replay Buffer 𝓓𝒌

…
Replay Buffer 𝓓𝟏
in Task 𝝉𝟏

Sample

Train

Sample

infer

(a) Buffer Reuse (b) Curriculum Distillation (c) Model Reload (DyAN)

Replay Buffer 𝓓𝒌4𝟏
in Task 𝝉𝒌4𝟏

…

Replay Buffer 𝓓𝒌
in Task 𝝉𝒌

The different components of the
agent, the dashed line means that
this part may not exist in some
algorithms.

Expert Demonstrations
Replay Buffer 𝓓𝒌
in task 𝝉𝒌

When the agent is
learning the task 𝝉𝒌, we
can reuse experience of

previous task (𝝉𝟏 …𝝉𝒌4𝟏)
to accelerate the learning

of task 𝝉𝒌.

…

𝝅𝝉𝒌 Or 𝒒𝝉𝒌

Train Train

𝝅𝝉𝟏(7 |𝒔)
Or 𝒒𝝉𝟏(7, 𝒔)

𝝅𝝉𝒌<𝟏(7 |𝒔)
Or 𝒒𝝉𝒌<𝟏(7, 𝒔)

𝝅𝝉𝒌(7 |𝒔)
Or 𝒒𝝉𝒌(7, 𝒔)

…

In order to accelerate the current learning
process, we transfer the knowledge
learned from previous task by distillation.

Networks in Task 𝝉!"#

Networks in Task 𝝉!

N
et

w
or

k
Pa

ra
m

et
er

In
it

ia
liz

at
io

n

N
etw

ork Param
eter Initialization

By combining our DyAN,
each previously learned

task can be easily reloaded
as an initialization for the
next task, which greatly
accelerates the learning

process and also improves
the final performance.

𝑶𝒃𝒔 𝒐 𝝉𝟏
𝒊 𝑹𝒆𝒘𝒂𝒓𝒅 𝒓𝝉𝒊

𝒊

dis
till
at
ion

Figure 2: An illustration of DyMA-CL using different transfer mechanisms.

Original state space Semantic state spaceΦ

Task 1

Task 2 Task 3

StateState with similar semantics

State with different semantics

map the semantically similar
states to similar positions in
the same latent space.

Figure 3: Mapping original states to the semantic state space.

Property 2 Sparse Interactivity: From the perspective of the
global view, each agent only interacts with some of the agents
in MASs at the same time, and the interactions do not happen
all the time.

In multiagent systems, agents often only need to coop-
erate with their neighbors and finally achieve the overall
coordination, which makes a sparse-interaction environment.
For example, in the predator-prey environment (Yang et al.
2018b), each predator would cooperate with its neighboring
predators to catch the surrounding prey, without considering
other preys in a larger distance.

Property 3 State Semanticity: Each state contains semantic
information which can be utilized to measure the similarity
between states.

Although states in different POSGs hold different dimen-
sions, they may contain semantically similar information,
which can be utilized to measure the similarity of these states.
For example, in StarCraft II, with the dynamics of the game
continue, the number of agents would decrease if either side
of soldiers die in the battle, in which situation learning is
similar to that in a small-size battlefield. As shown in Fig-
ure 3, given three tasks with their state spaces in different
colors respectively, we can learn a mapping function Φ to
represent the relations of these states in the semantic state
space. Thus, the state semanticity property can be naturally
used for transfer across different multiagent scenarios.

With the increase of the number of agents, the difficulties

and challenges mentioned above become more severe, which
makes it harder or even impossible to learn from scratch in
such large-scale multiagent systems (Samvelyan et al. 2019).
Inspired by the above properties, we design a dynamic multi-
agent curriculum learning to address large-scale multiagent
learning problems, i.e., starting from learning in an environ-
ment with a small number of agents, and then progressively
increasing the number of agents, and finally finishing the cur-
riculum which is described in detail in the following section.

Knowledge Transfer across DyMA-CL
In this section, we propose a novel curriculum learning
mechanism called dynamic multiagent curriculum learning
(DyMA-CL) for efficient large-scale multiagent learning. To
the best of our knowledge, it is challenging and difficult to
learn on a large-scale multiagent scenario, e.g., win the battle
in large-scale StartCraft II scenarios (e.g., a 15 Immortals vs
15 Immortals scenario) using existing methods (Samvelyan
et al. 2019; Rashid et al. 2018). Therefore, we build the cur-
riculum with the increase of the agent-number to learn on a
large-scale multiagent scenario. The sequence of tasks can
be manually designed or automated generated. Figure 1 illus-
trates an example of the DyMA-CL with 3 tasks in StarCraft
II. The target task is to win on a 15 immortals vs 15 immor-
tals scenario. We first learn the task I on a 5 immortals vs 5
immortals scenario, then learn the task II on a 10 immortals
vs 10 immortals scenario and finally learn the target task. We
also incorporate different knowledge transfer mechanisms
across neighboring curricula which are described in detail as
follows.

Figure 2 shows the whole framework of DyMA-CL using
different transfer mechanisms. The simplest transfer is to
directly reload the model trained in previous curricula as an
initialization for current task learning (Figure 2(c)). However,
Model Reload is infeasible since the input of regular train-
ing networks is fixed while different curricula have different
state spaces which makes the input size changing. The policy
network needs to be specially designed to be suitable for
different input sizes. We first propose two kinds of transfer
mechanisms without any constraints on the network design:
Buffer Reuse (Figure 2(a)) and Distillation via KL Diver-
gence (Figure 2(b)). How to redesign the network to support

parameter transfer will be discussed in the next section.
Buffer Reuse Inspired by deep Q-learning from demon-

strations (Hester et al. 2018) which incorporates extra expert
demonstrations as the supervision, we propose a novel trans-
fer mechanism called Buffer Reuse. For the agent learns the
sequence of tasks τ1, τ2, · · · , τk using one of the off-policy
RL algorithm, e.g., DQN (Mnih et al. 2015), it is equipped
with an experience replay buffer Di for each task τi, which
stores the corresponding transition samples. When the agent
is learning the task τk, we can reuse experience of previously
learned tasks to accelerate learning ck. Specifically, we keep
a sequence of replay buffers D1,D2, · · · ,Dk−1 for previ-
ously learned tasks τ1, τ2, · · · , τk−1 and sample a batch of
b transitions from each replay buffer equally to reuse these
good transition samples as expert demonstrations, we also
sample a batch from the current bufferDk and then minimize
the following loss in each training step:

Loss =

k∑
i=1

b∑
j=1

(rji + γmax
a
′j
i

qτi(s
′j
i , a

′j
i)− qτi(s

j
i , a

j
i)

)2

(1)
where

(
sji , a

j
i , s
′j
i , r

j
i

)
is the jth transition sample from the

replay buffer Di for task i, γ is a discount factor.
Note that the state space is different across tasks since the

number of agents varies, i.e., the dimension of a state in task
τi is larger than that in task τj if i > j. Therefore, these
samples cannot be collected together to calculate the loss in
Equation (1) directly. Here we modify the sampled transitions
to reshape them as the same dimension first, e.g., add zero-
padding for those samples with a smaller size of states, and
then execute the buffer reuse mechanism to accelerate the
learning process.

Curriculum Distillation The second transfer mechanism
adopts the distillation via Kullback-Leibler (KL) divergence
(Rusu et al. 2016) as the supervision which is a more gen-
eral pattern suitable for both on-policy and off-policy RL
algorithms.

Given a learned sequence of tasks T = {τ1, τ2, · · · , τk−1}
and the current task τk, in order to accelerate the current
learning process, we transfer the knowledge from previously
learned tasks by distillation. Specifically, we add an extra
distillation lossLDistil to the regular RL lossLRL using the KL
divergence with some temperature ω: Loss = LRL + LDistil,
where we can distil either Q-values or policies:

LDistil =

k−1∑
i=1

KL(πτi ||πτk) or

LDistil =

k−1∑
i=1

|Dk|∑
j=1

softmax(
qτi(sj)

ω
) ln

softmax(
qτi (sj)

ω)

softmax(qτk(sj))

(2)
Where, πτi is the policy for task τi and ω is the temperature
that controls the proportion transferred to the curriculum τk.
Similar to the cases in Buffer Reuse mechanism, states as the
network input for different curricula should be reshaped to
the same size first.

!"# = {

P ' !"# !()(!"#,')

!"#,- !"#,./"#!"#,0.1 !"#,23- !"2,-

������������
	
����������
����

� !"2,4

�

�

�

!"2,5

678,9�����	���	�

��

678,: 678,;

678

�� ���

� � !"#,2<-�����

Figure 4: The network structure of DyAN.

Dynamic Number Agent Network
As mentioned above, each kind of transfer mechanisms can-
not directly be used in our DyMA-CL, since the number
of agents varies across curricula and the dimension of each
agent i’s observation oit at each step t changes, i.e., the num-
ber of observations for other agents changes as the number
of agents changes.

Although the state space is different in two environments
due to the different number of agents, according to the Prop-
erty 3, some states in a large-scale environment often con-
tain similar semantic information to that in a small-size one.
Therefore, we provide a formal definition of the semantic
mapping function Φ(·) which extracts the semantic informa-
tion from each agent’s observation and indicates the mapping
between different state spaces.

Definition 1 Semantic Mapping Function
Given three tasks τe, τf and τg with different

state dimensions, if state sτee and state s
τf
f con-

tain similar semantic information while s
τg
g does not,

then through the mapping function Φ(·), there exists
a latent space that makes the following inequation
establish: dis(Φ(sτee),Φ(s

τf
f)) < dis(Φ(sτee),Φ(s

τg
g)),

dis(Φ(sτee),Φ(s
τf
f)) < dis(Φ(s

τf
f),Φ(s

τg
g)), where dis(,) is

the distance between two vectors.

By the definition of Semantic Mapping Function Φ(·),
the states in each task τi (each POSG) can be transformed
into the same semantic state space, which is also suitable
for mapping the local observation of each agent to the same
latent space. Thus, we can transfer knowledge across POSGs
with different state dimensions. This concept is widely used
in domain adaptation area (Higgins et al. 2017; Arnekvist,
Kragic, and Stork 2019), while they focus on how to transfer
from different tasks with the same state dimension. However,
the biggest challenge for DyMA-CL is how to deal with
different network input dimensions caused by the different
number of agents, and map the semantically similar states to
similar positions in the same latent space.

If the network is not restricted by the state/observation
of different dimensions, or the states/observations with the
same semantics of different dimensions can be mapped to
similar positions in the same latent space, then we can easily
transfer knowledge from different numbers of POSGs using
any of the above mechanisms for efficient curriculum learn-
ing. Inspired by Graph Neural Network (GNN) (Xu et al.
2019), to this end, we propose a novel network architecture
named Dynamic Agent-number Network (DyAN) to address
the above problems.

Figure 4 shows the network structure of the DyAN. Given
an observation oit of agent i at step t, the left part of DyAN
is the general neural networks, e.g., the fully-connected lay-
ers, with the environmental information oi,envt and its private
property mi

t as input. While the reset of oit contains several
observations about other agents which change among differ-
ent curricula. The right part of DyAN incorporates the GNN
to handle this dynamic dimensions of input. Specifically, we
learn a representation hi,jt for the agent i’s observation oi,jt
on each other agent j, which is achieved after several neural
network layers; and then using an aggregation operator to get
the output of GNN. Formally, the output of a GNN is:

hit = AGGREGATE
(
{hi,jt : j ∈ N−i}

)
(3)

where, N−i is the set of agents excluding agent i. Note that
we use one layer of GNN, a multiple layers of a GNN with
neighborhood communication is also suitable here. There
are several alternatives for the AGGREGATE operator (Xu
et al. 2019), e.g., the MAX operator that represents an
element-wise max-pooling, the MEAN operator representing
an element-wise mean pooling and the SUM operator, which
performance is investigated in the following section. Next,
the outputs of two parts of DyAN are concatenated to input
to the following neural network layers. The final output is the
Q-values or the policy respectively which is subject to the
specific RL algorithms.

As we described earlier, the simplest transfer mechanism
of model reload cannot be directly used in our curriculum
learning due to the dynamic dimensions of the network input.
By combining our DyAN, each previously learned model can
be easily reloaded as an initialization for the next curriculum
learning, which greatly accelerates the learning process and
also improves the final performance. In the next section, we
investigate the performance of three transfer mechanisms in
our curriculum learning in detail.

Simulations
In this section, we evaluate the performance of our DyMA-CL
on two large-scale scenarios: 1) StarCraft II, which contains
various scenarios for a number of agents to learn coordination
to solve complex tasks; and 2) MAgent (Zheng et al. 2018),
which is a simulated battlefield with two large-scale armies
(groups), e.g., each army consists of 50 soldiers who would
be arrayed in the battlefield (a grid world). We first select
two representative DRL algorithms from the perspective of
Independent learning and Joint-action Learning respectively:
IQL (Tampuu et al. 2017), VDN (Sunehag et al. 2018) to
investigate the performance of these approaches with and
without DyMA-CL on large-scale StarCraft II scenarios. We
further compare the performance of various existing DRL
approaches (IQL, PPO (Schulman et al. 2017), A2C (Mnih
et al. 2016), and ACER (Wang et al. 2017)) with DyMA-CL
on large-scale MAgent scenarios to validate the performance
of DyMA-CL since independent learning is more difficult to
learn in such large-scale multiagent settings without consid-
ering the coexistence of other agents. The details of neural
network structures, parameter settings and the curriculum
schedule are in supplementary materials.

StarCraftII
StarCraft II is a real-time strategy game with one or more
humans competing against each other or a built-in game
AI. At each step, each agent observes the local game state
which consists of the following information for all units in
its field of view: relative distance between other units, the
position and unit type (detailed in supplementary materials)
and selects one of the following actions: move north, south,
east or west, attack one of the grid units, stop and the null
action. Agents belonging to the same side receive the same
joint reward at each time step that equals to the total damage
on the enemy units. Agents also receive a joint reward of
10 points after killing each opponent, and 200 points after
killing all opponents. The game ends when all agents on one
side die or the time exceeds a fixed period.

Note that previous StarCraft II settings enable an agent
to attack one of its enemies by choosing one of id numbers
(Samvelyan et al. 2019). In this paper, we design the attack
action is to choose one of the grid units by dividing the battle-
field into several grids, in which case the coordination among
agents is much more difficult to achieve. We mainly con-
sider combat scenarios and design a multiagent curriculum
learning with the number of agents increasing (see Figure
1) to achieve the victory on a 15 Immortals vs 15 Immortals
scenario.

Figure5(a-c) show the average win rate of IQL with and
without our DyMA-CL under different network structures
(i.e., Vanilla network does not contain the GNN part, and
MAX means the GNN uses MAX as the aggregation opera-
tor). We can see from Figure5(a) that SUM performs better
than other kinds of network structures on the first task of
a 5 Immortals vs 5 Immortals scenario. As for the task II
on a 10 Immortals vs 10 Immortals battlefield (Figure5(b)),
our DyMA-CL with all three transfer mechanisms perform
better than learning from scratch. Note that the model reload
mechanism performs best among all transfer mechanisms,
this is because our proposed DyAN successfully learns the
similar semantics of states across curricula, then the model
from previously learned curriculum can be directly reused,
which leads to a higher win rate. The SUM operator performs
best among all three aggregations which means the capability
of learning state semantics is different for these three aggre-
gations and the GNN with SUM as aggregation learns more
accurate state semantics. This will be explained in detail in
the following section. For our last curriculum (Figure5(c)),
our DyMA-CL with model reload mechanism performs best
among all transfer mechanisms. Similar results as in curricu-
lum II can be found that learning from scratch is too difficult
as the increase of the agent number, and the winning rate is
never increased. We have conducted the simulation on larger
steps (1e + 7 steps) and learning from scratch still fails in
such a large-scale scenario.

Figure5(d-f) depict the average win rate of VDN with
and without our DyMA-CL. We can find different network
architectures perform similarly on the first task learning (Fig-
ure5(d)), and perform better than that combining IQL in
universal. This is because VDN explicitly considers how to
coordinate multiple agents using a team reward. Figure5(e)
and (f) show the similar and more outstanding performance
of DyMA-CL than that in IQL, and the GNN with SUM

(a) IQL-5I (b) IQL-10I (c) IQL-15I

(d) VDN-5I (e) VDN-10I (f) VDN-15I

Figure 5: Average win rate of IQL and VDN on DyMA-CL.

0 1 2 3 4 5
Step ×105

6
8

10
12
14
16
18
20

R
et

ur
n

MAX
MEAN
SUM
MAX+CL(Model)
MEAN+CL(Model)
SUM+CL(Model)

Figure 6: The average rewards of VDN on 15 Immortals vs
15 Immortals.

as aggregation learns best among all three mechanisms of
DyMA-CL, and the reason will be discussed in the following
section in detail. Note that the common measurement for
StarCraft II is the average win rate (Samvelyan et al. 2019),
which may hinder the phenomenon of a jumpstart on the
performance of DyMA-CL with model reload mechanism.
Therefore, we further present the results of average rewards
as shown in Figure 6. We can see a jumpstart average reward
of our DyMA-CL with model reload mechanism than learn-
ing from scratch, which indicates the agents can kill more
enemies and achieve higher average rewards at the beginning
than learning from scratch, confirming the effectiveness of
model reload mechanism across curricula.

Analysis We further investigate the influence of different
aggregations on the performance of DyMA-CL. As we dis-
cussed in Definition 1, if the two states with different di-
mensions contain similar semantic information, we can map
them to the same neighborhood position in the same latent
space. Here we illustrate whether these aggregations learn

the semantics of states using three StartCraft II scenarios
as examples, each of which contains two groups of 3, 4, 5
agents respectively. Then we input the observation about
teammates to DyAN, and use t-SNE (Wattenberg, Viégas,
and Johnson 2016) to map the embedding output of the GNN
part to a 2-dimension space, as shown in Figure 7(a-c). The
different colors denote the state contains different semantic
information, e.g., the green color represents that the local
observation only contains one teammate, which is actually
the same semantics while the input size is different across 3
scenarios. The different shapes represent states in different
scenarios, e.g., the triangle denotes the observations from a
4 Immortals vs 4 Immortals scenario. We can see that the
mapping result on the SUM aggregation is best among all
aggregations, which means SUM learns more accurate state
semantics so that the states with the same semantics across
different scenarios are mapped to the similar position and
each kind of semantics is distinguished clearly. Thus this
explains why SUM performs best among three aggregation
operations shown in Figure 5.

MAgent
MAgent is a Mixed Cooperative-Competitive scenario with
two armies fighting against each other, which supports hun-
dreds to millions of agents. The goal of each army is to get
more rewards by collaborating with teammates to destroy
all opponents. Each agent selects one of the following ac-
tions: moving to some grid unit or attacking some grid unit
based on its local observation which contains the follow-
ing information for all units: the hit points (HP), the posi-
tions. We adopt the default reward setting: -0.005 for every
move, 0.2 for attacking an enemy, 5 for killing an enemy, -0.1
for attacking an empty grid, and -0.1 for being attacked or
killed. We design a curriculum containing 5 tasks, each of
which learns on a battlefield with different number of agents

(a) MAX (b) MEAN (c) SUM

Figure 7: Embedding analysis for different aggregation mechanisms.

Table 1: Mean and Standard Error in MAgent (’w/’ denotes
with and ’w/o’ denotes without).

Results / Methods Survivors Kill count

IQL

Max
w/ CL 20.35±4.87 50±0

w/o CL 0.54±2.65 31.83±8.52

Mean
w/ CL 2.33±2.9 43.58±8.29

w/o CL 0 5.37±6.92

Sum
w/ CL 10.52±6.27 49.34± 2.23

w/o CL 0.05± 0.42 26.01± 7.11

PPO

Max
w/ CL 0.21±1.32 22.76±9.06

w/o CL 0 4.18±4.84

Mean
w/ CL 0.22±0.95 23.66±7.52

w/o CL 0 0.34±0.61

Sum
w/ CL 1.48±2.69 38.25±7.33

w/o CL 0 1.06±1.12

A2C

Max
w/ CL 16.5±10.92 47.71±5.61

w/o CL 3.65±5.58 36.4±13.79

Mean
w/ CL 6.8±7.39 43.77±10.36

w/o CL 0.28±1.04 25.21±11.7

Sum
w/ CL 8.96±8.52 44.59±9.17

w/o CL 1.07 ±3.75 17.1±14.44

ACER

Max
w/ CL 0 9.14±4.52

w/o CL 0 4.19±2.52

Mean
w/ CL 0 12.62±3.68

w/o CL 0 4.84±2.8

Sum
w/ CL 0 9.67±3.68

w/o CL 0 4.84±2.68

(10vs10, 20vs20, 30vs30, 40vs40, 50vs50).
We validate the performance of various independent learn-

ing algorithms with or without DyMA-CL. Table 1 presents
the average survival teammates and kill count of various
approaches in the target task of a 50 agents vs 50 agents sce-
nario. We can see that DyMA-CL with model reload mech-
anism greatly improves the final performance of IQL than
learning from scratch, achieving more survival teammates
and a higher average kill count. Similar results can be found
in PPO, A2C, and ACER that DyMA-CL boosts the perfor-
mance of these approaches and outperforms learning from
scratch. Note that the performance of ACER is worse than
other methods, which is caused by the policy adjustment

using samples from its replay buffer. This mechanism is
only considered from the perspective of independent learn-
ing, ignoring the non-stationary environment caused by other
agents. Moreover, DyMA-CL still improves the performance
of ACER and achieves a higher average kill count.

Discussion
As noted, we manually design the curriculum for both two
domains, StarCraft II and MAgent. Experimental results have
shown the great improvement of DyMA-CL on large-scale
MASs. However, the boost in the performance in this paper
is the first step that validates the effectiveness of DyMA-
CL. We have found that the design of the curriculum is a
critical factor in the performance of DyMA-CL. How to
select an appropriate curriculum schedule (including how to
decide on the training step-size for each task, how to select
the suitable learned model to reload and so on) is crucial.
Researches about automatic generation of the curriculum
are still investigated at an initial stage and not considered in
multiagent settings. Perhaps the major remaining limitations
are how to automatically generate the multiagent curriculum,
which will be further investigated as our future work.

Conclusion and Future Work
In this paper, we propose a novel algorithm, Dynamic Multia-
gent Curriculum Learning (DyMA-CL) to address large-scale
multiagent learning problems. We also propose three transfer
mechanisms across different curricula to accelerate the learn-
ing process, which is extensively validated by simulations.
Furthermore, we design a novel network structure, Dynamic
Agent-number Network (DyAN) to handle the dynamic size
of network input. Experimental results show that DyMA-CL
greatly improves the performance in large-scale problems
compared with state-of-the-art DRL approaches. As future
work, it is worthwhile investigating how to achieve automati-
cally multiagent curriculum learning to accelerate large-scale
multiagent learning. Another direction is how to design more
efficient transfer mechanisms to facilitate robust multiagent
curriculum learning.

References
[Agarwal, Kumar, and Sycara 2019] Agarwal, A.; Kumar, S.;
and Sycara, K. P. 2019. Learning transferable cooperative
behavior in multi-agent teams. CoRR abs/1906.01202.

[Andreas, Klein, and Levine 2017] Andreas, J.; Klein, D.;
and Levine, S. 2017. Modular multitask reinforcement learn-
ing with policy sketches. In Proceedings of ICML, 166–175.

[Arnekvist, Kragic, and Stork 2019] Arnekvist, I.; Kragic,
D.; and Stork, J. A. 2019. VPE: variational policy em-
bedding for transfer reinforcement learning. In Proceedings
of ICRA, 36–42.

[Bengio et al. 2009] Bengio, Y.; Louradour, J.; Collobert, R.;
and Weston, J. 2009. Curriculum learning. In Proceedings
of ICML, 41–48.

[Busoniu, Babuska, and Schutter 2008] Busoniu, L.;
Babuska, R.; and Schutter, B. D. 2008. A compre-
hensive survey of multiagent reinforcement learning. IEEE
T SYST MAN CY C 38(2):156–172.

[Chen et al. 2018] Chen, Y.; Zhou, M.; Wen, Y.; Yang, Y.;
Su, Y.; Zhang, W.; Zhang, D.; Wang, J.; and Liu, H. 2018.
Factorized q-learning for large-scale multi-agent systems.
arXiv preprint arXiv:1809.03738.

[Claus and Boutilier 1998] Claus, C., and Boutilier, C. 1998.
The dynamics of reinforcement learning in cooperative mul-
tiagent systems. AAAI/IAAI 1998:746–752.

[Hansen, Bernstein, and Zilberstein 2004] Hansen, E. A.;
Bernstein, D. S.; and Zilberstein, S. 2004. Dynamic program-
ming for partially observable stochastic games. In Proceed-
ings of AAAI, 709–715.

[Hester et al. 2018] Hester, T.; Vecerík, M.; Pietquin, O.;
Lanctot, M.; Schaul, T.; Piot, B.; Horgan, D.; Quan, J.;
Sendonaris, A.; Osband, I.; Dulac-Arnold, G.; Agapiou, J.;
Leibo, J. Z.; and Gruslys, A. 2018. Deep q-learning from
demonstrations. In Proceedings of AAAI, 3223–3230.

[Higgins et al. 2017] Higgins, I.; Pal, A.; Rusu, A. A.;
Matthey, L.; Burgess, C.; Pritzel, A.; Botvinick, M.; Blundell,
C.; and Lerchner, A. 2017. DARLA: improving zero-shot
transfer in reinforcement learning. In Proceedings of ICML,
1480–1490.

[Jiang and Lu 2018] Jiang, J., and Lu, Z. 2018. Learning
attentional communication for multi-agent cooperation. In
Proceedings of NeurIPS, 7254–7264.

[Littman 1994] Littman, M. L. 1994. Markov games as a
framework for multi-agent reinforcement learning. In Pro-
ceedings of ICML, 157–163.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Ried-
miller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015.
Human-level control through deep reinforcement learning.
Nature 518(7540):529.

[Mnih et al. 2016] Mnih, V.; Badia, A. P.; Mirza, M.; Graves,
A.; Lillicrap, T.; Harley, T.; Silver, D.; and Kavukcuoglu,
K. 2016. Asynchronous methods for deep reinforcement
learning. In Proceedings of ICML, 1928–1937.

[Narvekar and Stone 2019] Narvekar, S., and Stone, P. 2019.
Learning curriculum policies for reinforcement learning. In
Proceedings of AAMAS, 25–33.

[Narvekar et al. 2016] Narvekar, S.; Sinapov, J.; Leonetti, M.;
and Stone, P. 2016. Source task creation for curriculum
learning. In Proceedings of AAMAS, 566–574.

[Narvekar, Sinapov, and Stone 2017a] Narvekar, S.; Sinapov,
J.; and Stone, P. 2017a. Autonomous task sequencing for
customized curriculum design in reinforcement learning. In
Proceedings of IJCAI, 2536–2542.

[Narvekar, Sinapov, and Stone 2017b] Narvekar, S.; Sinapov,
J.; and Stone, P. 2017b. Autonomous task sequencing for
customized curriculum design in reinforcement learning. In
Proceedings of IJCAI, 2536–2542.

[Rashid et al. 2018] Rashid, T.; Samvelyan, M.; Witt, C. S.;
Farquhar, G.; Foerster, J.; and Whiteson, S. 2018. Qmix:
Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of ICML, 4292–4301.

[Rusu et al. 2016] Rusu, A. A.; Colmenarejo, S. G.; Gülçehre,
Ç.; Desjardins, G.; Kirkpatrick, J.; Pascanu, R.; Mnih, V.;
Kavukcuoglu, K.; and Hadsell, R. 2016. Policy distillation.
In Proceedings of ICLR.

[Samvelyan et al. 2019] Samvelyan, M.; Rashid, T.; de Witt,
C. S.; Farquhar, G.; Nardelli, N.; Rudner, T. G.; Hung, C.-M.;
Torr, P. H.; Foerster, J.; and Whiteson, S. 2019. The starcraft
multi-agent challenge. arXiv preprint arXiv:1902.04043.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal,
P.; Radford, A.; and Klimov, O. 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

[Singh, Jain, and Sukhbaatar 2019] Singh, A.; Jain, T.; and
Sukhbaatar, S. 2019. Individualized controlled continuous
communication model for multiagent cooperative and com-
petitive tasks. In Proceedings of ICLR.

[Sunehag et al. 2018] Sunehag, P.; Lever, G.; Gruslys, A.;
Czarnecki, W. M.; Zambaldi, V. F.; Jaderberg, M.; Lanc-
tot, M.; Sonnerat, N.; Leibo, J. Z.; Tuyls, K.; and Graepel,
T. 2018. Value-decomposition networks for cooperative
multi-agent learning based on team reward. In Proceedings
of AAMAS, 2085–2087.

[Sutton and Barto 2018] Sutton, R. S., and Barto, A. G. 2018.
Reinforcement learning: An introduction. MIT press.

[Tampuu et al. 2017] Tampuu, A.; Matiisen, T.; Kodelja, D.;
Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; and Vicente, R.
2017. Multiagent cooperation and competition with deep
reinforcement learning. PLOS ONE 12:1–15.

[Wang et al. 2017] Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.;
Munos, R.; Kavukcuoglu, K.; and de Freitas, N. 2017. Sam-
ple efficient actor-critic with experience replay. In Proceed-
ings of ICLR.

[Wattenberg, Viégas, and Johnson 2016] Wattenberg, M.;
Viégas, F.; and Johnson, I. 2016. How to use t-sne effectively.
Distill 1(10):e2.

[Wu and Tian 2017] Wu, Y., and Tian, Y. 2017. Training
agent for first-person shooter game with actor-critic curricu-
lum learning. In Proceedings of ICLR.

[Xu et al. 2019] Xu, K.; Hu, W.; Leskovec, J.; and Jegelka,
S. 2019. How powerful are graph neural networks? In
Proceedings of ICLR.

[Yang et al. 2018a] Yang, Y.; Luo, R.; Li, M.; Zhou, M.;
Zhang, W.; and Wang, J. 2018a. Mean field multi-agent

reinforcement learning. In Proceedings of ICML, volume 80,
5571–5580.

[Yang et al. 2018b] Yang, Y.; Yu, L.; Bai, Y.; Wen, Y.; Zhang,
W.; and Wang, J. 2018b. A study of AI population dynamics
with million-agent reinforcement learning. In Proceedings of
AAMAS, 2133–2135.

[Zheng et al. 2018] Zheng, L.; Yang, J.; Cai, H.; Zhou, M.;
Zhang, W.; Wang, J.; and Yu, Y. 2018. Magent: A many-
agent reinforcement learning platform for artificial collective
intelligence. In Proceedings of AAAI.

Supplementary Materials
Experimental Description
StarCraft II In StarCraft II, we follow the settings of pre-
vious works (Rashid et al. 2018; Samvelyan et al. 2019). The
local observation of each agent is drawn within their field
of view, which encompasses the circular area of the map
surrounding units and has a radius equal to the sight range.
The input vector of each agent consists of the following fea-
tures for all units in its observation range (both teammates
and enemy): distance, relative x, relative y, and the unit type.
We design the curriculum that each agent first learns on a
5 Immortals vs 5 Immortals battlefield for 1.5e + 6 steps,
then learns on a 10 Immortals vs 10 Immortals battlefield for
1.5e+ 6 steps, and learns on the target task of a 15 Immor-
tals vs 15 Immortals battlefield for 1.5e + 6 steps. We add
1.5e + 6 training steps for IQL in last two tasks since it is
more difficult to learn in such large-scale multiagent settings
without considering the coexistence of other agents.

MAgent We following the settings of previous work on
MAgent (Zheng et al. 2018), the action space includes 13
move actions, each of which will leads to a corresponding
direction; and 8 attack actions, each of which attacks a cor-
responding grid unit (see Figure 8). The observation range
for each agent is a 13 × 13 range of grids. The input vector
of each agent includes the position and the Hit Point (HP)
of the agent; the relative position of teammates and enemies,
which is represented as a one-hot vector; the Hit Points of
teammates and enemies, the number of teammates and ene-
mies; the action, reward and normalized position of the agent
at previous step. We design the curriculum that each agent
learns the sequence of tasks as follows: learning on a 10
agents vs 10 agents battlefield for 7500 steps; learning on a
20 agents vs 20 agents battlefield for 4500 steps; learning on
a 30 agents vs 30 agents battlefield for 1500 steps; learning
on a 40 agents vs 40 agents battlefield for 750 steps; learning
the target task of a 50 agents vs 50 agents battlefield for 1e+4
steps.

An illustration of DyAN for StarCraft II is shown in Figure
9. For the vanilla network which does not contain the right
part of DyAN, it contains a fully-connected layer with 64
units, following a GRU layer with 64 units, and then an output
layer that outputs the state-action values of each action. Our
DyAN divides the observation of each agent into two parts,
the environmental information o1,envt and itself information
m1
t are input to a fully-connected layer with 64 units; the rest

of information is input to the right part of DyAN. Specifically,
we separate the observation for its teammates (o1,2t , o1,3t) and

� �!.+-# +�- ,-�-# �* +!)+'�(� �)!�
).+��**+)��#�$(�-# ���" (-
 (/$+)(' (-���(��).+��**+)��#�
,$"($!$��(-&2�$'*+)/ ,�-# �
* +!)+'�(� �)!�-+�$($("�

�� �� �� �!�',�+���,#('�+)���

�!�',

�!�',

Move Attack

Figure 8: An illustration of action range on MAgent.

enemies (o1,4t , o1,5t , o1,6t), and input to two fully-connected
layers with 64 units respectively, each of which follows an
aggregation function, then all three parts are concatenated
together and input to a GRU layer with 64 units, the output
layer is a fully-connected layer that outputs the state-action
values of each action.

Network Structure
StarCraft II

MAgent The network structure of DyAN for MAgent is
similar to that for StarCraft II, except that the unit size for
each neural network layer is 16. The output can be either state-
action values for each action, or the probability of choosing
each action through a SOFTMAX activation. For actor-critic
approaches, e.g., A2C (Mnih et al. 2016), it also outputs the
state-values.

Parameter Settings
Here we provide the hyperparameters for StarCraft II and
MAgent.

Table 2: Hyperparameters used for StarCraft II.

Hyperparameter Value

Batch-size 32

Replay memory size 5000

Discount factor(γ) 0.99

Optimizer RMSProp

Learning rate 5e− 4

α 0.99

e 1e− 5

Gradient-norm-clip 10

Action-selector ε-greedy

ε-start 1.0

ε-finish 0.05

ε-anneal-time 50000 step

target-update-interval 200

𝑜"# = {

P(𝑎") |𝑜")) 𝑜𝑟 𝑄(𝑜"), 𝑎"))

Agent 1 Teammate Enemy

concatenate

GNN GNN NN

NN

𝑜"
#,/ 𝑜"

#,0

Embedding Embedding

Aggregation：SUM/MAX/MEAN etc.

𝑜"
#,/, 𝑜"

#,0, 𝑜"
#,1,𝑜"

#,2, 𝑜"
#,3, 𝑚"

#, 𝑜"
#,567}

Figure 9: An illustration of the network structure of DyAN for StarCraft II.

Table 3: IQL hyperparameters used for MAgent.

Hyperparameter Value

Batch-size 32

Replay memory size 100000

Replay memory size at the start of training 5000

Discount factor(γ) 0.98

Optimizer Adam

Learning rate 1e− 4

e 1e− 8

Action-selector ε-greedy

ε-start 1.0

ε-finish 0.01

ε-anneal-time 99 episodes

target-update-interval 20

Table 4: A2C hyperparameters used for MAgent.

Hyperparameter Value

Training interval (T horizon) 20 step

Discount factor(γ) 0.98

Optimizer Adam

Learning rate 1e− 3

e 1e− 8

Entropy term coefficient 0.1

Value loss coefficient 1

Actor loss coefficient 1

Table 5: PPO hyperparameters used for MAgent.

Hyperparameter Value

Training interval (T horizon) 10 step

Discount factor(γ) 0.98

Clip hyperparameter ε 0.2

GAE λ 0.95

Optimizer Adam

Learning rate 2e− 3

e 1e− 8

Entropy term coefficient 1e-3

Value loss coefficient 1

Actor loss coefficient 1

Table 6: ACER hyperparameters used for MAgent.

Hyperparameter Value

Batch-size 64

Replay memory size 100000

Replay memory size at the start of training 100

Discount factor(γ) 0.98

Training interval (T horizon) 10 step

Discount factor(γ) 0.98

Truncating importance sampling ratio c 1.0

Optimizer Adam

Learning rate 1e− 2

e 1e− 8

Entropy term coefficient 1e-2

Value loss coefficient 1

Bias correction term 1

Actor loss coefficient 1

	Introduction
	Background
	Partially Observable Stochastic Games
	Curriculum Learning

	Dynamic Multiagent Curriculum Learning
	Large-scale Multiagent Systems
	Knowledge Transfer across DyMA-CL
	Dynamic Number Agent Network

	Simulations
	StarCraftII
	MAgent

	Discussion
	Conclusion and Future Work
	Experimental Description
	Network Structure
	Parameter Settings

