
ACTION SEMANTICS NETWORK:
CONSIDERING THE EFFECTS OF ACTIONS IN MULTIA-
GENT SYSTEMS

Weixun Wang1 *, Tianpei Yang1 *, Yong Liu2 , Jianye Hao1 B, Xiaotian Hao1, Yujing Hu3,
Yingfeng Chen3, Changjie Fan3, Yang Gao2,

1Tianjin University, {wxwang, tpyang, jianye.hao, xiaotianhao}@tju.edu.cn
2Nanjing University, lucasliunju@gmail.com, gaoy@nju.edu.cn
3NetEase Fuxi AI Lab, {huyujing, chenyingfeng1, fanchangjie}@corp.netease.com

ABSTRACT

In multiagent systems (MASs), each agent makes individual decisions but all of
them contribute globally to the system evolution. Learning in MASs is difficult
since the selection of actions must take place in the presence of other co-learning
agents. Moreover, the environmental stochasticity and uncertainties increase ex-
ponentially with the number of agents. A number of previous works borrow var-
ious multiagent coordination mechanisms into deep multiagent learning architec-
ture to facilitate multiagent coordination. However, none of them explicitly con-
sider action semantics between agents. In this paper, we propose a novel network
architecture, named Action Semantics Network (ASN), that explicitly represents
such action semantics between agents. ASN characterizes different actions’ influ-
ence on other agents using neural networks based on the action semantics between
agents. ASN can be easily combined with existing deep reinforcement learning
(DRL) algorithms to boost their performance. Experimental results on StarCraft
II and Neural MMO show ASN significantly improves the performance of state-
of-the-art DRL approaches compared with a number of network architectures.

1 INTRODUCTION

Deep reinforcement learning (DRL) (Sutton & Barto, 2018) has achieved a lot of success at finding
optimal policies to address complex control tasks(Mnih et al., 2015; Silver et al., 2017; Lillicrap
et al., 2015). However, there also exist a lot of challenges in multiagent systems (MASs) since
agents’ behaviors are influenced by each other and the environment exhibits more stochasticity and
uncertainties(Claus & Boutilier, 1998; Hu et al., 1998; Bu et al., 2008; Rashid et al., 2018; Sen &
Weiss, 1999).

Recently, a number of deep multiagent reinforcement learning (MARL) approaches have been pro-
posed to address complex problems in MASs. One major class of works incorporates various multi-
agent coordination mechanisms into deep multiagent learning architecture(Foerster et al., 2018b;a;
Yang et al., 2018; Palmer et al., 2018). Lowe et al. (2017) proposed a centralised actor-critic archi-
tecture to address the partial observability in MASs. They also incorporate the idea of joint action
learner (JAL)(Littman, 1994) to facilitate multiagent coordination. Later, Foerster et al. (2018b) pro-
posed Counterfactual Multi-Agent Policy Gradients (COMA) which is motivated from the difference
reward mechanism(Wolpert & Tumer, 2002) to address the challenges of multi-agent credit assign-
ment. Recently, Yang et al. (2018) proposed applying mean-field theory(Stanley, 1971) to solve
large-scale multiagent learning problems. Palmer et al. (2018) extended the idea of leniency(Potter
& De Jong, 1994; Panait et al., 2008) to deep MARL and proposed the retroactive temperature decay
schedule to address stochastic rewards problems. Another class of works focus on specific network
structure design by putting constraints between individual agents’ Q values and the global one to
facilitate multiagent coordination(Sunehag et al., 2018; Rashid et al., 2018; Sukhbaatar et al., 2016).
Sunehag et al. (2018) designed a value-decomposition network (VDN) to learn an optimal linear

* Equal contribution. BCorresponding author.

1

ar
X

iv
:1

90
7.

11
46

1v
1

 [
cs

.M
A

]
 2

6
Ju

l 2
01

9

value decomposition from the team reward signal based on the assumption that the joint action-
value function for the system can be additively decomposed into value functions across agents.
Later, Rashid et al. (2018) assumed that the Q-values of individual agents and the global one are
also monotonic, and proposed QMIX by employing a network that estimates joint action-values as
a complex non-linear combination of per-agent values that condition only on local observations.
However, none of the existing works consider from the perspective that an agent’s different actions
may have different impacts on other agents, which is a nature property in MASs. In multiagent
settings, each agent’s action set can be naturally divided into two types of actions: one type con-
tains actions that affect environmental information or its private properties and the other type of
actions directly influence other agents. Intuitively, the Q-values of actions of different types should
be learned over different input information. Thus this indicates that we can leverage the action se-
mantics information to improve an agent’s policy network design toward more efficient multiagent
learning.

To this end, we propose a novel network structure, named Action Semantics Network (ASN) to char-
acterize such action semantics for more efficient multiagent coordination. The main contributions of
this paper can be summarized as follows. 1) To the best of our knowledge, we are the first to explic-
itly consider action semantics and design a novel network to extract it to facilitate learning in MASs.
2) ASN can be easily combined with any existing RL models to boost its learning performance. 3)
Experimental results∗ on StarCraft II and Neural MMO(Suarez et al., 2019) show our ASN leads to
better performance compared with state-of-the-art approaches in terms of both convergence speed
and final performance.

2 BACKGROUND

Stochastic games (SGs)(Littman, 1994) are a natural multiagent extension of Markov decision pro-
cesses (MDPs), which models the dynamic interactions among multiple agents. Considering the
fact that agents may not have access to the complete environmental information, we follow previous
work’s settings and model the multiagent learning problems as partially observable stochastic games
(POSGs)(Hansen et al., 2004).

A partially observable stochastic game (POSG) is defined as a tuple 〈N ,S,A1, · · · ,An, T ,R1, · · · ,
Rn,O1, · · · ,On〉, where N is the set of agents; S is the set of states; Ai is the set of actions
available to agent i (the joint action space A = A1 ×A2 × · · · × An); T is the transition function
that defines transition probabilities between global states: S × A × S → [0, 1]; Ri is the reward
function for agent i: S ×A → R and Oi is the set of observations for agent i.

Note that a state s ∈ S describes the possible configurations of all agents, while each agent
i draws a private observation oi correlated with the state: S 7→ Oi, e.g., an agent’s observa-
tion includes the agent’s private information and the relative distance between itself and other
agents. Formally, an observation of agent i at step t can be constructed as follows: oit =

{oi,envt ,mi
t, o

i,1
t , · · · , oi,i−1t , oi,i+1

t , · · · , oi,nt }, where oi,envt is the observed environmental infor-
mation, mi

t is the private property of agent i (e.g., in robotics, mi
t includes agent i’s location, the

battery power and the healthy status of each component) and the rest are the observations of agent
i on other agents (e.g., in robotics, oi,i−1t includes the relative location, the exterior of agent i − 1
that agent i observes). An policy πi: Oi×Ai → [0; 1] specifies the probability distribution over the
action space of agent i. The goal of agent i is to learn a policy πi that maximizes the expected return
with a discount factor γ: J = Eπi

[∑∞
t=0 γ

trit
]
.

3 THE ACTION SEMANTICS NETWORK ARCHITECTURE

3.1 MOTIVATION

In MASs, multiple agents interact with the environment simultaneously which increases the envi-
ronmental stochasticity and uncertainties, making it difficult to learn a consistent globally optimal
policy for each agent. A number of deep multiagent Reinforcement Learning(MARL) approaches
∗More details can be found at https://sites.google.com/view/arn-multiagent, the source code will be released

in the future

2

have been proposed to address such complex problems in MASs by either incorporating various mul-
tiagent coordination mechanisms into deep multiagent learning architecture(Foerster et al., 2018b;a;
Yang et al., 2018; Palmer et al., 2018) or designing specialized network structures to facilitate mul-
tiagent learning(Sunehag et al., 2018; Rashid et al., 2018; Sukhbaatar et al., 2016). However, none
of them explicitly consider action semantics, which we believe is a critical factor in multiagent
settings. Specifically, each agent’s action set can be naturally classified into two types: one type
contains actions that affect environmental information or its private properties and the other type of
actions directly influence other agents. Therefore, if an agent’s action is to attack (or communicate
with) one of other agents, the value of performing this action should be explicitly dependent on the
agent’s perception of its environments and the agent to be attacked (or communicated with), and any
additional information is irrelevant and may add noise. We refer to the property that different actions
may have different impacts on other agents and should be evaluated differently as action semantics
between agents.

As we analyzed, the value estimation of actions of different semantics can be improved by relying
on only those relevant information. However, previous works use all information to estimate the Q
values of all actions, lack of targeted evaluations. To this end, we propose a new network architecture
called Action Semantics Network (ASN) that explicitly considers action semantics between agents
to improve the estimation accuracy on different actions. Instead of mixing all agent’s information
together and then inputting into the network, ASN separates the agent’s information according to
the action semantics. In this way, ASN can provides a more accurate estimation of each action’s
value and significantly improve the performance of existing DRL algorithms. Besides, ASN is quite
general and can be incorporated into any existing deep MARL frameworks. In the next section, we
will describe the ASN structure in detail.

3.2 ASN

Considering the semantic difference of different actions, we classify an agent’s action setAi of agent
i into two subsets: Aiin, Aiout. Aiin contains actions that affect the environmental information or its
private properties and do not influence other agents directly, e.g., moving to different destinations
would only affect its own location information. Aiout corresponds to those actions that directly
influence some of other agents, e.g., attack agent j in competitive settings, communicate with agent
j in cooperative settings.

oi
t oi,env

t mi
t oi,1

t oi,n
t…

,,
=()

Agent i

…

Action Select

ai
t

oi
t oi,1

t oi,n
t…

…
⃗ei

t

ENi

E2Ai

Network

Network

⃗ei
t

ENi,1Network

⃗ei,1
t

⃗ei,n
tLeft Part Right Part

…..

….. …..

…..
Q(oi

t , a)
a ∈ Ai

ou ta ∈ Ai
in

ENi,nNetwork

π (a |oi
t)

or

Figure 1: Action Semantics Network Architecture

Following the above classification,
the proposed network architecture,
ASN, explicitly considers different
influence of an agent’s actions on
other agents by separating the in-
formation stream through different
isolated networks (shown in Figure
1). Considering an agent i and n−1
agents in its neighborhood, ASN
decouples agent i’s network as fol-
lows. The left part shown in Figure
1 contains a network EN i which is
used to generate the state embed-
ding ei and a network E2Ai (embedding to action) which generates the values of all action in Aiin
as output. The right part is used to estimate the values of those actions in Aiout related with each
influenced agent, composed of n− 1 subnetworks (EN i,j , j ∈ N , j 6= i) which are responsible for
determining the state embeddings related with each influenced agent. The input of EN i is the agent
i’s observation oit, and each of other n − 1 subnetworks takes one neighbor agent j’s information
oi,jt (which denotes the observation of agent i on its neighbor agent j and is a part of oit) as the input.

At each step t, the output of EN i is the embedding of agent i, denoted as eit. The evaluation of
executing each action ait ∈ Aiin is Q(oit, a

i
t) = fa(eit, a

i
t), where fa(eit, a

i
t) is one of the output

of the E2Ai network corresponding to ait. The output of EN i,j is the embedding of agent i on
agent j, denoted as ei,jt . To evaluate the performance of executing an action ai,jt ∈ Aiout on any of
another agent j, ASN combines the output of two subnetworks using a pairwise interaction function

3

M (e.g., inner product):
Q(oit, a

i,j
t) =M(eit, e

i,j
t) (1)

then agent i selects the action : ait = argmax
ait∈Ai

{Q(oit, a
i
t)}.

Similarly, if the policy is directly optimized through policy based RL methods, the probabil-
ity of choosing each action is proportional to the output of each subnetwork: π(ait|oit) ∝
exp(fa(eit, a

i
t)), π(a

i,j
t |oit) ∝ exp(M(eit, e

i,j
t)). Then agent i selects an action following πi:

π(ait|oit) =
exp(fa(eit, a

i
t))

Zπi(oit)
, π(ai,jt |oit) =

exp(M(eit, e
i,j
t))

Zπi(oit)
(2)

where Zπi(oit) is the partition function that normalizes the distribution. Here we only consider the
case that an action ai,j directly influences one particular agent j. In general, there may exist multiple
actions directly influencing one particular agent which is detailed in Section 3.3(Multi-action ASN).

3.3 ASN-MARL

Next we describe how ASN can be incorporated into existing deep MARL, which can be classified
into two paradigms: Independent Learner (IL) (Mnih et al., 2015; Schulman et al., 2017) and Joint
Action Learner (JAL) (Lowe et al., 2017; Rashid et al., 2018; Foerster et al., 2018b). IL applies a
single-agent learning algorithm to a multiagent domain to treat other agents as part of the environ-
ment. In contrast, JALs observe the actions of other agents, and optimize the policy for each joint
action. Following the above two paradigms, we propose two classes of ASN-based MARL: ASN-
IL and ASN-JAL. For ASN-IL, we focus on the case of combing ASN with PPO(Schulman et al.,
2017), a popular single-agent policy-based RL. The way ASN combines with other single-agent RL
is similar. In contrast, ASN-JAL describes existing deep MARL approaches combined with ASN,
e.g., QMIX(Rashid et al., 2018) and VDN(Sunehag et al., 2018).

ASN-PPO In PPO, each agent i is equipped with a policy network parameterized by θi. ASN-
PPO replaces the vanilla policy network architecture with ASN and optimizes the policy following
PPO.

Generally, policy gradient methods optimize the expected return J(θi) = Eπθi
[∑∞

t=0 γ
trit
]

using
the policy gradient theorem: ∇θiJ(θi) = Et

[
∇θi log πθi(ait|oit)At(oit, ait)

]
, where At is the ad-

vantage function. PPO uses constraints and advantage estimation to reformulate the optimization
problem as:

max
θi

Et

[
πθi(a

i
t|oit)

πθiold(a
i
t|oit)

At(o
i
t, a

i
t)

]
(3)

where θiold is the policy parameters before the update. Here, let rt(θi) denote the probability ratio
πθi (a

i
t|o

i
t)

π
θi
old

(ait|oit)
, then in ASN-PPO, rt(θi) can be rewritten as follows by substituting Equation 2:

rt(θ
i) =


exp(fa(eit,a

i
t;θ

i))

exp(fa(eit,a
i
t;θ

i
old))

Zπi (oit;θ
i
old)

Zπi (oit;θ
i)

if ait ∈ Aiin
exp(M(eit,e

i,j
t ;θi))

exp(M(eit,e
i,j
t ;θiold))

Zπi (oit;θ
i
old)

Zπi (oit;θ
i)

if ait ∈ Aiout
(4)

Lastly, ASN-PPO maximizes the objective (Equation 3) following PPO during each iteration.

ASN-QMIX The way ASN combines with deep MARL algorithms is similar and we take
QMIX(Rashid et al., 2018) as an example which is detailed as follows. Figure 2 illustrates
the ASN-QMIX network structure, where for each agent i, ASN-QMIX replaces the vanilla Q-
network architecture with ASN. At each step t, the individual Q-function Q(oit, a

i
t) is first cal-

culated following Section 3.2 and then is input into the mixing network. The mixing network
mixes the output of all agents’ networks monotonically and produces the joint action-value func-
tion Qtot(st, at). The weights of the mixing network are restricted to be non-negative and pro-
duced by separate hypernetworks (shown in Figure 2), each of which takes state st as input and
generates the weights of one layer of the mixing network. Finally, ASN-QMIX is trained to
minimize the loss: L(θ) =

∑b
i=1

[
(ytott −Qtot(s,a; θ))2

]
, where b is the batch size of transi-

tions, ytott = rt + γmaxa′ Qtot(s
′,a′; θ−), and θ− is the parameters of the target network as in

DQN(Mnih et al., 2015).

4

oi, j
t …

⃗ei
t

ENi,1Network

⃗ei, j1
t

…..

…

… …

⃗ei, jm
t

…

(a) Multi-action ASN

o i,1
t o i,n

t…

…

⃗ei
t

ENi,1Network

⃗ei,1
t

⃗ei,n
t

…..

ENi,nNetwork

(b) Basic ASN

⃗ei
t

o i,1
t o i,n

t…

ENi, j
Network

⃗ei,1
t

⃗ei,n
t

…..

(c) Homogeneous ASN

o i,1
t o i,n

t…

…

⃗ei
t

ENi,1Network

⃗ei,1
t

⃗ei,n
t

……

ENi,nNetwork

…… o i,k
t o i, j

t

⃗ei,k
t

⃗ei, j
t

(d) Mixed ASN

Figure 3: Different variants of ASN.

Mixing Network

Agent 1 Agent n…

o1
t on

t

Q1(o1
t , a1

t) Qn(on
t , an

t)

Q1(o1
t , a1

t) Qn(on
t , an

t)

st

…
W1

W2
| · |

| · |

Qtot(st, at)

st

on
t

on,env
t= (mn

t on,1
t , …)on

t ,,
…

Qn(on
t , an

t)

…Qn(on
t , ·)

Network

ENn

Network

E2An

ENn,1
Network

Qtot(st, at)

Figure 2: QMIX-ASN

Multi-action ASN The
general case in MASs is
that an agent may have dif-
ferent influence on other
agents through choosing
different actions, e.g., a
soldier can select different
weapons to attack enemies
and cause different dam-
ages. Motivated by this, we
extend the basic ASN to a
generalized version, named
Multi-action ASN (shown
in Figure 3 (a)), that takes oi,j as input, and produces a number of embeddings ei,j1 , · · · , ei,jm ,
where m is the number of actions that directly influences agent j. After that, multi-action ASN
calculate the Q-function of each action, which uses a pairwise interaction functionM to combine
the two embeddings ei,jk,k∈[1,m] and ei following Equation (1).

Parameter Sharing Parameter Sharing (PS) mechanism is widely used in MARL. If agents are
homogeneous, their policies can be trained more efficiently using PS which greatly reduces the
training complexity(Gupta et al., 2017). Recent work(Rashid et al., 2018) also incorporates PS
on heterogeneous agents by adding extra information to identify each type. Following previous
work, here we incorporate PS into ASN. The right part of ASN (Figure 1) contains a number of
subnetworks, each of which takes oi,j as input (Figure 3 (b)). In this way, the number of subnetworks
is equal to the number of agents that an action ai,jt ∈ Aiout has a direct impact on any of another
agent j. The training of basic ASN is inefficient with the increase of the number of subnetworks.
If the other agents that agent i can directly influence are homogeneous, the subnetwork parameters
can be shared across those agents. Thus, in a homogeneous MAS, all influencing agents can share
one subnetwork (shown in Figure 3 (c)); in a MAS that contains several types of agents, each type
of agents can share one subnetwork (Mixed ASN in Figure 3 (d)). Note that the basic ASN (Figure
3 (b)) can be seen as the simplest case that designs a subnetwork for each influencing agent without
PS.

4 SIMULATIONS

We evaluate the performance of ASN compared with different network structures including the
vanilla network (i.e., aggregate all information and input into one network), the dueling network
(Wang et al., 2016) and the attention network (i.e., the vanilla network adds an additional hidden
layer to compute the weights of the input and then generate an element-wise product to input into
the next layer) under various DRL approaches. Our test domains include StarCraft II (Samvelyan
et al., 2019) and Massively Multiplayer Online Role-Playing Games (Neural MMO)(Suarez et al.,
2019). The details of neural network structures and parameter settings are in the supplementary
material.

5

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention

(a) IQL

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention

(b) QMIX

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention

(c) VDN

Figure 4: Win rates of various methods on the StarCraft II 8m map.

0 1 2 3 4
Step ×106

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 r
at

es

Vanilla
ASN

(a) 2s3z

0.0 0.2 0.4 0.6 0.8 1.0
Step ×107

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN

(b) 15m

Figure 5: Win rates of ASN-QMIX and vanilla-QMIX on different SC II maps.

4.1 STARCRAFT II

StarCraft II is a real-time strategy game with one or more humans competing against each other
or against a built-in game AI. At each step, each agent observes the local game state (detailed in
supplementary materials) and selects one of the following actions: move north, south, east or west,
attack one of its enemies, stop and the null action. Agents belonging to the same side receive the
same joint reward at each time step that equals to the total damage on the enemy units. Agents
also receive a joint reward of 10 points after killing each opponent, and 200 points after killing all
opponents. The game ends when all agents on one side die or the time exceeds a fixed period.

Note that previous works (Foerster et al., 2018b; Rashid et al., 2018; Samvelyan et al., 2019) tested
on StarCraft II reduce the learning complexity by manually adding a rule that forbids each agent to
select an invalid action, e.g., attack an opponent that beyond the attack range and move beyond the
grid border. We relax this setting since it requires additional prior knowledge, which is unrealistic
in the real world. Thus, the following results are based on the setting that each agent can select an
action that causes an invalid effect, and in result, the agent will standstill at the current time step.
We also test ASN under previous settings (adding the manual rule in StarCraft II that forbidding the
invalid actions) which can be found in the supplementary materials.

In StarCraft II 8m map (8 Marines vs 8 Marines), each agent is homogeneous to each other, so
we adopt Homogeneous ASN to evaluate whether it can efficiently characterize action semantics
between two agents. Figure 4 (a), (b) and (c) show the performance of ASN on an 8m map compared
with vanilla, dueling and attention networks under different RL algorithms (IQL(Mnih et al., 2015),
QMIX, VDN). We can see that ASN performs best among all of network structures in terms of both
convergence rate and average win rates achieved. By separating the observation information into
several parts and process each part using different subnetworks, ASN enables an agent to learn the
right timing to attack different opponents to maximize its total damage on opponents. In contrast,
existing network architectures simply mix all information into one network, thus an agent cannot
distinguish the difference of effects that different actions may have on the opponents and may choose
the suboptimal opponent to attack, thus resulting in lower performance than ASN. Dueling and
attention networks show very similar performance with the vanilla network among all methods,
therefore, we only present results of ASN-QMIX compared with the vanilla network under QMIX
(denoted as vanilla-QMIX) in the following sections.

6

0 2 4 6 8 10 12 14
Distance

0.8

0.6

0.4

0.2

0.0
Q

 v
al

ue

ASN
Vanilla

(a) Toy scenario 1

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Blood Delta

0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16

Q
 v

al
ue

Opponent 1
Opponent 2

(b) Vanilla-QMIX on toy scenario 2

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Blood Delta

0.46

0.44

0.42

0.40

0.38

0.36

0.34

Q
 v

al
ue

Opponent 1
Opponent 2

(c) ASN-QMIX on toy scenario 2

Figure 6: The attack action’s Q-values of ASN and vanilla under different circumstances.

Next, we consider a more complex scenario: StarCraft II 2S3Z (2 Stalkers and 3 Zealots vs 2 Stalkers
and 3 Zealots) which contains two heterogeneous groups, each agent inside one group are homoge-
neous and can evaluate the performance of Mixed ASN compared with vanilla-QMIX. From Figure
5 (a) we can observe that Mixed ASN-QMIX perform better than vanilla-QMIX. The reason ASN
efficiently identifies action semantics between each type of two agents, thus it selects more proper
attack options each time and achieves better performance last vanilla-QMIX.

To show the robustness of ASN, we further test on a large-scale agent space on a 15m map. Figure
5 (b) depicts the dynamics of the average win rates of ASN-QMIX and vanilla-QMIX. We can see
that ASN-QMIX quickly learns the average win rates of approximately 80 %, while vanilla-QMIX
fails, with the average win rates of approximately only 20 %. From Figure 4 (b) and 5 (b) we can
find that with the increase of the agent number, the margin becomes larger between two methods.
Intuitively, ASN enables an agent to explicitly consider more numbers of other agents’ information
with a larger agent space. However, for an agent using the vanilla network, it is more difficult to
identify the action influence on other agents from a larger amount of mixed information, which
results in lower average win rates than ASN. An interesting observation for vanilla-QMIX is that
they will run away to avoid all being killed, and testing videos can be found in our anonymous
website∗.

Table 1: Percentages of choosing a
valid action for ASN-QMIX and vanilla-
QMIX.

ASN Vanilla
PCT 71.9 ± 0.15% 44.3 ± 0.11%

Next we further investigate why ASN performs bet-
ter. Table 1 presents the average percentages of choos-
ing a valid action for ASN-QMIX and vanilla-QMIX
on a 15m map. Note that we remove the manually
added rule (which makes the percentage of choosing
a valid action to be 100% percent), and agents would
probably select the invalid action and standstill, which
increases the learning difficulties. We can see that
ASN-QMIX achieves an average percentage of approx-
imately 71.9% for choosing a valid action. However, vanilla-QMIX only achieves an average per-
centage of approximately 44.3%. This phenomenon confirms that ASN effectively exploits action
semantics between agents and enables agents to learn which action can be chosen at each time step,
facilitating more robust learning, even in large-scale MASs.

Finally, we investigate whether ASN can efficiently characterize the action semantics and facilitate
multiagent coordination. To make the analysis more clear, we test the model learnt on a 15m map
on two toy scenarios: 1) a one-on-one combat scenario that the distance between two agents is
dynamically changing; 2) a one Marine vs two Marines scenario that the blood volume of two
opponents are dynamically different). Figure 6 (a) shows the dynamics of the attack action’s Q-
value with the distance change of an agent and its opponent. We can observe that the Q-value of
the action that the ASN agent attacking its opponent decreases as the distance of the agent and its
opponent increases, and stabilizes when the distance exceeds the attack range. However, the vanilla
agent keeps the Q-value of the attack action nearly unchanged. Figure 6 (b) and (c) shows the
dynamics of the attack action’s Q-value of ASN agent and vanilla agent with the two opponent’s
blood difference changing (i.e., the blood delta equals to the blood volume of opponent 1 minus the
blood volume of opponent 2). The ASN agent holds a higher attack action’s Q-value on opponent 1
when opponent 1’s blood volume is lower than opponent 2 and vice versa. The symmetric curve of

7

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

20

40

60

80

Av
g

R
ew

ar
d

Vanilla
ASN
Attention

(a) PPO

0 1 2 3 4
Step ×106

0

20

40

60

80

100

Av
g

R
ew

ar
d

Vanilla
ASN
Attention

(b) ACKTR

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

0

20

40

60

80

Av
g

R
ew

ar
d

Vanilla
ASN
Attention

(c) A2C

Figure 8: Average rewards of various methods on Neural MMO.

ASN is due to the toy scenario that the state description of two opponents is very similar. However,
the vanilla agent always keeps a higher attack action’s Q-value on Opponent 1 than on Opponent
2, which means it always selects to attack Opponent 1. These results show that ASN effectively
exploits the action semantics between agents and facilitates robust learning among agents.

4.2 NEURAL MMO

Mage

Range

Melee

Attack

RangeDamage
1

2

5

10

4

2

Figure 7: An illustration of Neural MMO.

The Neural MMO(Suarez et al., 2019) is a
massively multiagent environment that de-
fines combat systems for a large number of
agents. Figure 7 illustrates a simple Neu-
ral MMO scene with two groups of agents
on a 10×10 tile. Each group contains 3
agents, each of which starts at any of the
tiles, with 100 drops of blood. At each
step, each agent loses one drop of blood,
observes local game state (detailed in sup-
plementary materials) and decides on an
action, i.e., moves one tile (up, right, left, down and stop) or makes an attack using any of three
attack options (shown in the left part in Figure 7: “Melee” with the attack distance is 2, the amount
of damage is 5; “Range” with the attack distance is 4, the amount of damage is 2; “Mage” with the
attack distance is 10, the amount of damage is 1). Each action that causes an invalid effect (e.g.,
attack an opponent that beyond the attack range and move beyond the grid border) would make the
agent standstill. Each agent gets a penalty of−0.1 if the attack fails. The game ends when all agents
in one group die or the time exceeds a fixed period, and agents belonging to the same group receive
a joint reward, which is the difference of the total blood volumes between itself and its opposite side.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

A
vg

 D
am

ag
e

ASN Attention Vanilla

Melee Range Mage Total

Figure 9: The average dam-
age of choosing each attack un-
der distance dij ≤ 2 in Neural
MMO.

In Neural MMO, an agent can attack one of its opponent using
one of three different attack options, which can be used to evalu-
ate whether multi-action ASN can efficiently identify the multi-
ple action semantics between two agents. Figure 8 (a), (b) and (c)
present the performance of multi-action ASN on Neural MMO
compared with vanilla and attention networks under different IL
methods (PPO, ACKTR(Wu et al., 2017) and A2C(Mnih et al.,
2016)). We can observe that ASN performs best under all three
IL approaches in terms of average rewards. This is because ASN
can learn to choose appropriate actions against other agents at dif-
ferent time steps to maximize the damage on others. However, the
vanilla network just mixes all information together which makes
it difficult to identify and take advantage of the action semantics
between agents, thus it achieves lower performance than ASN.
Although the attention network computes the weights of the in-
put, the information is mixed initially, it is hard to distinguish
which part of the information is more useful. Therefore, it also achieves lower performance than
ASN but slightly better than vanilla approaches.

8

We further investigate whether ASN can efficiently exploit different action semantics between two
agents and enable an agent to identify the best attack option (i.e., an attack that causes the most dam-
age) with the distance between the agent and its opponent changing. Figure 15 shows the average
attack damage of each attack option in Neural MMO when the distance between an agent i and its
opponent j is less than or equal to 2 (dij ≤ 2). The best attack option is “Melee” within this distance
range since it causes the maximum damage among three attacks. We can see that the ASN agent
causes the highest damage on average. However, the average damage of attention network using
“Melee” is approximately 0.05 and the vanilla network never selects the best attack option within
such a distance range. This is because the ASN agent has a larger probability to select the best attach
option “Melee” than other two networks, thus causes larger total damage. Similar results (when the
distance between an agent i and its opponent j is less than or equal to 4 (dij ≤ 4) and less than or
equal to 10 (dij ≤ 10)) can be found in supplementary materials that ASN always causes a higher
total damage than two other networks.

5 CONCLUSION AND FUTURE WORK

We propose a new network architecture, ASN, to facilitate more efficient multiagent learning by
explicitly investigating the action semantics between agents. ASN is the first to characterize the
actions semantics in MASs, which can be easily combined with various DRL algorithms to solve
complex tasks. ASN greatly improves the performance of state-of-the-art DRL methods compared
with a number of network architectures. In this paper, we only consider the direct action influence
between any of two agents. As future work, it is worth investigating how to model the action
semantics among more than two agents. Another interesting direction is to consider the action
semantics between agents in continuous action space.

REFERENCES

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2):156–172, 2008.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998:746–752, 1998.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 122–130. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2018a.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018b.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 66–83. Springer, 2017.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, volume 4, pp. 709–715, 2004.

Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learning: theoretical framework
and an algorithm. In ICML, volume 98, pp. 242–250. Citeseer, 1998.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

9

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep
reinforcement learning. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 443–451. International Foundation for Autonomous Agents
and Multiagent Systems, 2018.

Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient learners: An evolutionary
game theoretic perspective. Journal of Machine Learning Research, 9(Mar):423–457, 2008.

Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to function
optimization. In International Conference on Parallel Problem Solving from Nature, pp. 249–
257. Springer, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In International Conference on Machine Learning, pp. 4292–4301, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sandip Sen and Gerhard Weiss. Learning in multiagent systems. Multiagent systems: A modern
approach to distributed artificial intelligence, pp. 259–298, 1999.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

H Eugene Stanley. Phase transitions and critical phenomena. Clarendon Press, Oxford, 1971.

Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively mul-
tiagent game environment for training and evaluating intelligent agents. arXiv preprint
arXiv:1903.00784, 2019.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing Systems, pp. 2244–2252, 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning, pp. 1995–2003, 2016.

10

David H Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives. In
Modeling complexity in economic and social systems, pp. 355–369. World Scientific, 2002.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances in
neural information processing systems, pp. 5279–5288, 2017.

Y Yang, R Luo, M Li, M Zhou, W Zhang, and J Wang. Mean field multi-agent reinforcement
learning. In 35th International Conference on Machine Learning, ICML 2018, volume 80, pp.
5571–5580. PMLR, 2018.

11

A APPENDIX

SUPPLEMENTARY MATERIALS

STATE DESCRIPTION

Neural MMO In a 10x10 tile (where each tile can be set as different kinds, e.g., rocks, grass),
there are two teams of agents (green and red), each of which has 3 agents. At the beginning of each
episode, each agent appears on any of the 10x10 tiles. The observation of an agent is in the form of
a 43-dimensional vector, in which the first 8 dimensions are: time to live, blood volume, remaining
foods (set 0), remaining water (set 0), current position (x and y), the amount of damage suffered,
frozen state (1 or 0); the rest of 35 dimensions are divided equally to describe the other 5 agents’
information. The first 14 dimensions describe the information of 2 teammates, following with the
description of 3 opponents’ information. Each observed agent’s information includes the relative
position(x and y), whether it is a teammate(1 or 0), blood volume, remaining foods, remaining water
and the frozen state.

Each Agent chooses an action from a set of 14 discrete actions: stop, move left, right, up or down,
and three different attacks against one of its opponent (“Melee” with the attack distance is 2, the
amount of damage is 5; “Range” with the attack distance is 4, the amount of damage is 2; “Mage”
with the attack distance is 10, the amount of damage is 1).

Each agent gets a penalty of −0.1 if the attack fails. They get a −0.01 reward for each ticks and a
−10 penalty for being killed. The game ends when a group of agents die or the time exceeds a fixed
period, and agents belonging to the same group receive the same reward, which is the difference of
the total number of drops of blood between itself and its opposite side.

StarCraft II In StarCraft II, we follow the settings of previous work(Rashid et al., 2018;
Samvelyan et al., 2019). The local observation of each agent is drawn within their field of view,
which encompasses the circular area of the map surrounding units and has a radius equal to the sight
range. Each agent receives as input a vector consisting of the following features for all units in its
field of view (both allied and enemy): distance, relative x, relative y and unit type. More details can
be found at https://github.com/multiagent-arn/ASN or https://github.com/oxwhirl/smac.

NETWORK STRUCTURE

hidden units#Ain

Dense Layer

GRU Layer

Relu

Relu

64 hidden units

64 hidden units

64 hidden units

#A hidden units

Vanilla

oi
t

Relu

Relu

64 hidden units

64 hidden units

64 hidden units

#A hidden units

Dueling

Relu

Relu

32 hidden units

ASN

Relu

64 hidden units

64 hidden units

#A hidden units

Attention
1 hidden units

64 hidden units

Attention Weight

Attention 32 hidden units

32 hidden units

oi
t

oi
t oi

t oi
t oi,1

t

Relu

32 hidden units

32 hidden units

32 hidden units

Relu

inner product

Figure 10: ASN structure on a StartCraft II 8m map.

12

64 hidden units

64 hidden units

#A hidden units

Vanilla

oi
t

Tanh

Tanh

Actor Critic

64 hidden units

64 hidden units

oi
t

Tanh

Tanh

1 hidden units

Tanh

Figure 11: Vanilla structure on Neural MMO.

Attention

Tanh

64 hidden units

64 hidden units

#A hidden units

64 hidden units

Attention Weight

Attention

Actor Critic

64 hidden units

64 hidden units

oi
t

Tanh

Tanh

1 hidden units

oi
t oi

t

Tanh

Tanh

Figure 12: Attention structure on Neural MMO.

hidden units

32 hidden units

32 hidden units

o i
t o i,1

t

32 hidden units

3 * 32 hidden units

inner product

ARNActor Critic

64 hidden units

64 hidden units

o i
t

Tanh

Tanh

1 hidden units#Ain

Tanh Tanh

Tanh

Tanh

Tanh

split to [3, 32]

ASN

Figure 13: ASN structure on Neural MMO.

PARAMETER SETTINGS

Here we provide the hyperparameters for StarCraft II and Neural MMO†.

†More details can be found at https://github.com/multiagent-arn/ASN

13

Table 2: Hyperparameters used for StarCraft II.

Hyperparameter Value

Batch-size 32

Replay memory size 5000

Discount factor(γ) 0.99

Optimizer RMSProp

Learning rate 5e− 4

α 0.99

e 1e− 5

Gradient-norm-clip 10

Action-selector ε-greedy

ε-start 1.0

ε-finish 0.05

ε-anneal-time 50000 step

target-update-interval 200

Table 3: A2C hyperparameters used for Neural MMO.

Hyperparameter Value

Number of processes 5

Discount factor(γ) 0.99

Optimizer RMSProp

Learning rate 7e− 4

α 0.99

e 1e− 5

Gradient-norm-clip 0.5

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

14

Table 4: ACKTR hyperparameters used for Neural MMO.

Hyperparameter Value

Number of processes 5

Discount factor(γ) 0.99

Optimizer KFACOptimizer

Learning rate 0.25

Momentum 0.9

Stat decay 0.99

KL clip 1e-3

Damping 1e-2

Weight decay 0

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

Table 5: PPO hyperparameters used for Neural MMO.

Hyperparameter Value

Number of processes 1

Discount factor(γ) 0.99

Optimizer Adam

Learning rate 7e− 4

e 1e− 5

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

EXPERIMENTAL RESULTS

The following results present the performance of ASN-QMIX and vanilla-QMIX under different
StarCraft II maps with adding the manually rule (forbids the agent to choose the invalid actions).

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.00

0.25

0.50

0.75

1.00

W
in

 r
at

es

Vanilla
ASN

(a) 5m

0.0 0.5 1.0 1.5 2.0
Step ×106

0.00

0.25

0.50

0.75

1.00

W
in

 r
at

es

Vanilla
ARN

(b) 8m

Figure 14: Win rates of ASN-QMIX and vanilla-QMIX under different StarCraft II maps.

15

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
vg

 D
am

ag
e

ASN Attention Vanilla

Melee
Range
Mage
Total

(a) dij ≤ 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
vg

 D
am

ag
e

ASN Attention Vanilla

(b) dij ≤ 4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

A
vg

 D
am

ag
e

ASN Attention Vanilla

(c) dij ≤ 10

Figure 15: The average probabilities of choosing each attack under different distance dij in Neural
MMO.

The above results present the average attack damage of each attack option under different distance
between the agent and its opponent.

16

	1 Introduction
	2 Background
	3 The Action Semantics Network Architecture
	3.1 Motivation
	3.2 ASN
	3.3 ASN-MARL

	4 Simulations
	4.1 StarCraft II
	4.2 Neural MMO

	5 Conclusion and Future Work
	A Appendix

